These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 3584112)

  • 1. Effect of phosphate on the kinetics and specificity of glycation of protein.
    Watkins NG; Neglia-Fisher CI; Dyer DG; Thorpe SR; Baynes JW
    J Biol Chem; 1987 May; 262(15):7207-12. PubMed ID: 3584112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycation of amino groups in protein. Studies on the specificity of modification of RNase by glucose.
    Watkins NG; Thorpe SR; Baynes JW
    J Biol Chem; 1985 Sep; 260(19):10629-36. PubMed ID: 4030761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of the site specificity of glycation and carboxymethylation of ribonuclease.
    Brock JW; Hinton DJ; Cotham WE; Metz TO; Thorpe SR; Baynes JW; Ames JM
    J Proteome Res; 2003; 2(5):506-13. PubMed ID: 14582647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inorganic phosphate accelerates hemoglobin A1c synthesis.
    Kunika K; Itakura M; Yamashita K
    Life Sci; 1989; 45(7):623-30. PubMed ID: 2770417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of nonenzymatic glycation of ribonuclease A leading to advanced glycation end products. Paradoxical inhibition by ribose leads to facile isolation of protein intermediate for rapid post-Amadori studies.
    Khalifah RG; Todd P; Booth AA; Yang SX; Mott JD; Hudson BG
    Biochemistry; 1996 Apr; 35(15):4645-54. PubMed ID: 8664253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Helical peptide models for protein glycation: proximity effects in catalysis of the Amadori rearrangement.
    Venkatraman J; Aggarwal K; Balaram P
    Chem Biol; 2001 Jul; 8(7):611-25. PubMed ID: 11451663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of glycated proteins by 13C NMR spectroscopy. Identification of specific sites of protein modification by glucose.
    Neglia CI; Cohen HJ; Garber AR; Thorpe SR; Baynes JW
    J Biol Chem; 1985 May; 260(9):5406-10. PubMed ID: 2985592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of hemoglobin ligands on the kinetics of human hemoglobin A1c formation.
    Lowrey CH; Lyness SJ; Soeldner JS
    J Biol Chem; 1985 Sep; 260(21):11611-8. PubMed ID: 3930480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of glycation on the chemical and enzymatic stability of the endogenous opioid peptide, leucine-enkephalin, and related fragments.
    Jakas A; Horvat S
    Bioorg Chem; 2004 Dec; 32(6):516-26. PubMed ID: 15530992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aldimine to ketoamine isomerization (Amadori rearrangement) potential at the individual nonenzymic glycation sites of hemoglobin A: preferential inhibition of glycation by nucleophiles at sites of low isomerization potential.
    Acharya AS; Roy RP; Dorai B
    J Protein Chem; 1991 Jun; 10(3):345-58. PubMed ID: 1910466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphate promotes glycation of antithrombin III which interferes with heparin binding.
    Hall PK; Roberts RC
    Biochim Biophys Acta; 1989 Dec; 993(2-3):217-23. PubMed ID: 2597694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of organic phosphates with bovine hemoglobin. I. Oxylabile and phosphate-labile proton binding.
    Breepoel PM; Kreuzer F; Hazevoet M
    Pflugers Arch; 1981 Mar; 389(3):219-25. PubMed ID: 6262706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of site-specific glycation during process development of a human therapeutic monoclonal antibody.
    Miller AK; Hambly DM; Kerwin BA; Treuheit MJ; Gadgil HS
    J Pharm Sci; 2011 Jul; 100(7):2543-50. PubMed ID: 21287557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between organic phosphates and sheep hemoglobins.
    Holland RA; Tibben EA; Hallam JF
    Adv Exp Med Biol; 1990; 277():191-7. PubMed ID: 1710868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro kinetic studies of formation of antigenic advanced glycation end products (AGEs). Novel inhibition of post-Amadori glycation pathways.
    Booth AA; Khalifah RG; Todd P; Hudson BG
    J Biol Chem; 1997 Feb; 272(9):5430-7. PubMed ID: 9038143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Amadori product on protein: structure and reactions.
    Baynes JW; Watkins NG; Fisher CI; Hull CJ; Patrick JS; Ahmed MU; Dunn JA; Thorpe SR
    Prog Clin Biol Res; 1989; 304():43-67. PubMed ID: 2675036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amadori rearrangement potential of hemoglobin at its glycation sites is dependent on the three-dimensional structure of protein.
    Nacharaju P; Acharya AS
    Biochemistry; 1992 Dec; 31(50):12673-9. PubMed ID: 1472504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The binding of acetaldehyde to the active site of ribonuclease: alterations in catalytic activity and effects of phosphate.
    Mauch TJ; Tuma DJ; Sorrell MF
    Alcohol Alcohol; 1987; 22(2):103-12. PubMed ID: 3651178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Buffer Composition on Site-Specific Glycation of Lysine Residues in Monoclonal Antibodies.
    Jacobitz AW; Dykstra AB; Spahr C; Agrawal NJ
    J Pharm Sci; 2020 Jan; 109(1):293-300. PubMed ID: 31150698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative quantification of N(epsilon)-(Carboxymethyl)lysine, imidazolone A, and the Amadori product in glycated lysozyme by MALDI-TOF mass spectrometry.
    Kislinger T; Humeny A; Peich CC; Zhang X; Niwa T; Pischetsrieder M; Becker CM
    J Agric Food Chem; 2003 Jan; 51(1):51-7. PubMed ID: 12502384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.