These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35841179)

  • 1. Recent advances in yeast genome evolution with stress tolerance for green biological manufacturing.
    Xu K; Zhang YF; Guo DY; Qin L; Ashraf M; Ahmad N
    Biotechnol Bioeng; 2022 Oct; 119(10):2689-2697. PubMed ID: 35841179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of stress tolerant Saccharomyces cerevisiae strains by metabolic engineering: New aspects from cell flocculation and zinc supplementation.
    Cheng C; Zhang M; Xue C; Bai F; Zhao X
    J Biosci Bioeng; 2017 Feb; 123(2):141-146. PubMed ID: 27576171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering tolerance to industrially relevant stress factors in yeast cell factories.
    Deparis Q; Claes A; Foulquié-Moreno MR; Thevelein JM
    FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28586408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Exploration of yeast biodiversity and development of industrial applications].
    Fan T; Wang M; Li J; Wang F; Zhang Z; Zhao XQ
    Sheng Wu Gong Cheng Xue Bao; 2021 Mar; 37(3):806-815. PubMed ID: 33783151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.
    Borodina I; Nielsen J
    Biotechnol J; 2014 May; 9(5):609-20. PubMed ID: 24677744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combinatorial genetic perturbation to refine metabolic circuits for producing biofuels and biochemicals.
    Kim HJ; Turner TL; Jin YS
    Biotechnol Adv; 2013 Nov; 31(6):976-85. PubMed ID: 23562845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Xylose Assimilation for the Efficient Production of Biofuels and Chemicals by Engineered Saccharomyces cerevisiae.
    Sun L; Jin YS
    Biotechnol J; 2021 Apr; 16(4):e2000142. PubMed ID: 33135317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Robust Yeast Strains for Lignocellulosic Biorefineries Based on Genome-Wide Studies.
    Zhang MM; Chen HQ; Ye PL; Wattanachaisaereekul S; Bai FW; Zhao XQ
    Prog Mol Subcell Biol; 2019; 58():61-83. PubMed ID: 30911889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals.
    Turner TL; Kim H; Kong II; Liu JJ; Zhang GC; Jin YS
    Adv Biochem Eng Biotechnol; 2018; 162():175-215. PubMed ID: 27913828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae.
    Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS
    Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Saccharomyces cerevisiae for direct conversion of raw, uncooked or granular starch to ethanol.
    Görgens JF; Bressler DC; van Rensburg E
    Crit Rev Biotechnol; 2015; 35(3):369-91. PubMed ID: 24666118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-scale modeling of yeast metabolism: retrospectives and perspectives.
    Chen Y; Li F; Nielsen J
    FEMS Yeast Res; 2022 Feb; 22(1):. PubMed ID: 35094064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved ethanol productivity and ethanol tolerance through genome shuffling of Saccharomyces cerevisiae and Pichia stipitis.
    Jetti KD; Gns RR; Garlapati D; Nammi SK
    Int Microbiol; 2019 Jun; 22(2):247-254. PubMed ID: 30810988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Robustness of Microbial Cell Factories.
    Gong Z; Nielsen J; Zhou YJ
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28857502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement in D-xylose utilization and isobutanol production in S. cerevisiae by adaptive laboratory evolution and rational engineering.
    Promdonkoy P; Mhuantong W; Champreda V; Tanapongpipat S; Runguphan W
    J Ind Microbiol Biotechnol; 2020 Jul; 47(6-7):497-510. PubMed ID: 32430798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose.
    Oh EJ; Jin YS
    FEMS Yeast Res; 2020 Feb; 20(1):. PubMed ID: 31917414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production.
    Mans R; Daran JG; Pronk JT
    Curr Opin Biotechnol; 2018 Apr; 50():47-56. PubMed ID: 29156423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulatory mechanisms underlying yeast chemical stress response and development of robust strains for bioproduction.
    Yuan B; Wang WB; Wang YT; Zhao XQ
    Curr Opin Biotechnol; 2024 Apr; 86():103072. PubMed ID: 38330874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates.
    Cámara E; Olsson L; Zrimec J; Zelezniak A; Geijer C; Nygård Y
    Biotechnol Adv; 2022; 57():107947. PubMed ID: 35314324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review on sustainable yeast biotechnological processes and applications.
    Nandy SK; Srivastava RK
    Microbiol Res; 2018 Mar; 207():83-90. PubMed ID: 29458873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.