BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35841417)

  • 1. Comparison of lung CT number and airway dimension evaluation capabilities of ultra-high-resolution CT, using different scan modes and reconstruction methods including deep learning reconstruction, with those of multi-detector CT in a QIBA phantom study.
    Ohno Y; Akino N; Fujisawa Y; Kimata H; Ito Y; Fujii K; Kataoka Y; Ida Y; Oshima Y; Hamabuchi N; Shigemura C; Watanabe A; Obama Y; Hanamatsu S; Ueda T; Ikeda H; Murayama K; Toyama H
    Eur Radiol; 2023 Jan; 33(1):368-379. PubMed ID: 35841417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial resolution improvement and dose reduction potential for inner ear CT imaging using a z-axis deconvolution technique.
    McCollough CH; Leng S; Sunnegardh J; Vrieze TJ; Yu L; Lane J; Raupach R; Stierstorfer K; Flohr T
    Med Phys; 2013 Jun; 40(6):061904. PubMed ID: 23718595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-based reconstruction in ultra-high-resolution computed tomography: Can image noise caused by high definition detector and the miniaturization of matrix element size be improved?
    Urikura A; Yoshida T; Nakaya Y; Nishimaru E; Hara T; Endo M
    Phys Med; 2021 Jan; 81():121-129. PubMed ID: 33453504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of airway dimensions using a high-resolution CT scanner: A phantom study.
    Zhao Y; Hernandez AM; Boone JM; Molloi S
    Med Phys; 2021 Oct; 48(10):5874-5883. PubMed ID: 34287955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of synthesized normal-resolution image data generated from high-resolution acquisitions on a commercial CT scanner.
    Hernandez AM; Shin DW; Abbey CK; Seibert JA; Akino N; Goto T; Vaishnav JY; Boedeker KL; Boone JM
    Med Phys; 2020 Oct; 47(10):4775-4785. PubMed ID: 32677085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness of deep learning reconstruction on standard to ultra-low-dose high-definition chest CT images.
    Hamabuchi N; Ohno Y; Kimata H; Ito Y; Fujii K; Akino N; Takenaka D; Yoshikawa T; Oshima Y; Matsuyama T; Nagata H; Ueda T; Ikeda H; Ozawa Y; Toyama H
    Jpn J Radiol; 2023 Dec; 41(12):1373-1388. PubMed ID: 37498483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo depiction of cortical bone vascularization with ultra-high resolution-CT and deep learning algorithm reconstruction using osteoid osteoma as a model.
    Boubaker F; Teixeira PAG; Hossu G; Douis N; Gillet P; Blum A; Gillet R
    Diagn Interv Imaging; 2024 Jan; 105(1):26-32. PubMed ID: 37482455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of acquisition method and reconstruction algorithm for CT number measurement on standard-dose CT and reduced-dose CT: a QIBA phantom study.
    Ohno Y; Fujisawa Y; Fujii K; Sugihara N; Kishida Y; Seki S; Yoshikawa T
    Jpn J Radiol; 2019 May; 37(5):399-411. PubMed ID: 30805851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of radiation dose and reconstruction algorithm in MDCT assessment of airway wall thickness: A phantom study.
    Gomez-Cardona D; Nagle SK; Li K; Robinson TE; Chen GH
    Med Phys; 2015 Oct; 42(10):5919-27. PubMed ID: 26429266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of deep learning reconstruction on abdominal CT densitometry and image quality: a systematic review and meta-analysis.
    van Stiphout JA; Driessen J; Koetzier LR; Ruules LB; Willemink MJ; Heemskerk JWT; van der Molen AJ
    Eur Radiol; 2022 May; 32(5):2921-2929. PubMed ID: 34913104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Filtered Back Projection, Hybrid Iterative Reconstruction, Model-Based Iterative Reconstruction, and Virtual Monoenergetic Reconstruction Images at Both Low- and Standard-Dose Settings in Measurement of Emphysema Volume and Airway Wall Thickness: A CT Phantom Study.
    Kim C; Lee KY; Shin C; Kang EY; Oh YW; Ha M; Ko CS; Cha J
    Korean J Radiol; 2018; 19(4):809-817. PubMed ID: 29962888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of high-resolution CT for detection and discrimination tasks related to stenotic lesions - A phantom study using model observers.
    Hernandez AM; Burkett GW; Pham N; Abbey CK; Boone JM
    Med Phys; 2023 Apr; 50(4):2037-2048. PubMed ID: 36583447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CT reconstruction techniques for improved accuracy of lung CT airway measurement.
    Rodriguez A; Ranallo FN; Judy PF; Gierada DS; Fain SB
    Med Phys; 2014 Nov; 41(11):111911. PubMed ID: 25370644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image Quality and Lesion Detection on Deep Learning Reconstruction and Iterative Reconstruction of Submillisievert Chest and Abdominal CT.
    Singh R; Digumarthy SR; Muse VV; Kambadakone AR; Blake MA; Tabari A; Hoi Y; Akino N; Angel E; Madan R; Kalra MK
    AJR Am J Roentgenol; 2020 Mar; 214(3):566-573. PubMed ID: 31967501
    [No Abstract]   [Full Text] [Related]  

  • 15. Low contrast detectability and spatial resolution with model-based Iterative reconstructions of MDCT images: a phantom and cadaveric study.
    Millon D; Vlassenbroek A; Van Maanen AG; Cambier SE; Coche EE
    Eur Radiol; 2017 Mar; 27(3):927-937. PubMed ID: 27300195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Improvement of Image Quality in the Axial Section Using High-resolution Scan Mode and Hybrid Iterative Reconstruction in Ultra-high-resolution Computed Tomography].
    Sakai Y; Shirasaka T; Kondo M; Hamasaki H; Mikayama R; Matsumoto R; Hioki K; Onizuka Y; Yoshikawa H
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2018 Dec; 74(12):1419-1427. PubMed ID: 30568092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of emphysema and airway measurements according to iterative reconstruction algorithms: comparison of filtered back projection, adaptive statistical iterative reconstruction and model-based iterative reconstruction.
    Choo JY; Goo JM; Lee CH; Park CM; Park SJ; Shim MS
    Eur Radiol; 2014 Apr; 24(4):799-806. PubMed ID: 24275806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Dose Abdominal CT Using a Deep Learning-Based Denoising Algorithm: A Comparison with CT Reconstructed with Filtered Back Projection or Iterative Reconstruction Algorithm.
    Shin YJ; Chang W; Ye JC; Kang E; Oh DY; Lee YJ; Park JH; Kim YH
    Korean J Radiol; 2020 Mar; 21(3):356-364. PubMed ID: 32090528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dedicated convolutional neural network for noise reduction in ultra-high-resolution photon-counting detector computed tomography.
    Huber NR; Ferrero A; Rajendran K; Baffour F; Glazebrook KN; Diehn FE; Inoue A; Fletcher JG; Yu L; Leng S; McCollough CH
    Phys Med Biol; 2022 Sep; 67(17):. PubMed ID: 35944556
    [No Abstract]   [Full Text] [Related]  

  • 20. Volumetric measurement of artificial pure ground-glass nodules at low-dose CT: Comparisons between hybrid iterative reconstruction and filtered back projection.
    Sakai N; Yabuuchi H; Kondo M; Kojima T; Nagatomo K; Kawanami S; Kamitani T; Yonezawa M; Nagao M; Honda H
    Eur J Radiol; 2015 Dec; 84(12):2654-62. PubMed ID: 26362824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.