BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 35841418)

  • 21. Improvement of glucosinolates by metabolic engineering in
    Miao H; Zeng W; Wang J; Zhang F; Sun B; Wang Q
    aBIOTECH; 2021 Sep; 2(3):314-329. PubMed ID: 36303883
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fire and Brimstone: Molecular Interactions between Sulfur and Glucosinolate Biosynthesis in Model and Crop Brassicaceae.
    Borpatragohain P; Rose TJ; King GJ
    Front Plant Sci; 2016; 7():1735. PubMed ID: 27917185
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Further insight into decreases in seed glucosinolate content based on QTL mapping and RNA-seq in Brassica napus L.
    Chao H; Li H; Yan S; Zhao W; Chen K; Wang H; Raboanatahiry N; Huang J; Li M
    Theor Appl Genet; 2022 Sep; 135(9):2969-2991. PubMed ID: 35841418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fine mapping and candidate gene analysis of a seed glucosinolate content QTL, qGSL-C2, in rapeseed (Brassica napus L.).
    Liu Y; Zhou X; Yan M; Wang P; Wang H; Xin Q; Yang L; Hong D; Yang G
    Theor Appl Genet; 2020 Feb; 133(2):479-490. PubMed ID: 31832742
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome- and transcriptome-wide association studies reveal the genetic basis and the breeding history of seed glucosinolate content in Brassica napus.
    Tan Z; Xie Z; Dai L; Zhang Y; Zhao H; Tang S; Wan L; Yao X; Guo L; Hong D
    Plant Biotechnol J; 2022 Jan; 20(1):211-225. PubMed ID: 34525252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Natural variation and artificial selection at the BnaC2.MYB28 locus modulate Brassica napus seed glucosinolate.
    Zhou X; Zhang H; Xie Z; Liu Y; Wang P; Dai L; Zhang X; Wang Z; Wang Z; Wan L; Yang G; Hong D
    Plant Physiol; 2023 Jan; 191(1):352-368. PubMed ID: 36179100
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A major yellow-seed QTL on chromosome A09 significantly increases the oil content and reduces the fiber content of seed in Brassica napus.
    Chao H; Guo L; Zhao W; Li H; Li M
    Theor Appl Genet; 2022 Apr; 135(4):1293-1305. PubMed ID: 35084514
    [TBL] [Abstract][Full Text] [Related]  

  • 28. BnPIR: Brassica napus pan-genome information resource for 1689 accessions.
    Song JM; Liu DX; Xie WZ; Yang Z; Guo L; Liu K; Yang QY; Chen LL
    Plant Biotechnol J; 2021 Mar; 19(3):412-414. PubMed ID: 33068485
    [No Abstract]   [Full Text] [Related]  

  • 29. A Comprehensive Gene Inventory for Glucosinolate Biosynthetic Pathway in
    Harun S; Abdullah-Zawawi MR; Goh HH; Mohamed-Hussein ZA
    J Agric Food Chem; 2020 Jul; 68(28):7281-7297. PubMed ID: 32551569
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coordination of Glucosinolate Biosynthesis and Turnover Under Different Nutrient Conditions.
    Jeschke V; Weber K; Moore SS; Burow M
    Front Plant Sci; 2019; 10():1560. PubMed ID: 31867028
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dissection of genetic architecture for glucosinolate accumulations in leaves and seeds of Brassica napus by genome-wide association study.
    Liu S; Huang H; Yi X; Zhang Y; Yang Q; Zhang C; Fan C; Zhou Y
    Plant Biotechnol J; 2020 Jun; 18(6):1472-1484. PubMed ID: 31820843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A systematic dissection of the mechanisms underlying the natural variation of silique number in rapeseed (Brassica napus L.) germplasm.
    Li S; Zhu Y; Varshney RK; Zhan J; Zheng X; Shi J; Wang X; Liu G; Wang H
    Plant Biotechnol J; 2020 Feb; 18(2):568-580. PubMed ID: 31368615
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic dissection of harvest index and related traits through genome-wide quantitative trait locus mapping in
    Chao H; Raboanatahiry N; Wang X; Zhao W; Chen L; Guo L; Li B; Hou D; Pu S; Zhang L; Wang H; Wang B; Li M
    Breed Sci; 2019 Mar; 69(1):104-116. PubMed ID: 31086488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stable and novel QTL identification and new insights into the genetic networks affecting seed fiber traits in Brassica napus.
    Miao L; Chao H; Chen L; Wang H; Zhao W; Li B; Zhang L; Li H; Wang B; Li M
    Theor Appl Genet; 2019 Jun; 132(6):1761-1775. PubMed ID: 30830267
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic dissection of the mechanism of flowering time based on an environmentally stable and specific QTL in Brassica napus.
    Li B; Zhao W; Li D; Chao H; Zhao X; Ta N; Li Y; Guan Z; Guo L; Zhang L; Li S; Wang H; Li M
    Plant Sci; 2018 Dec; 277():296-310. PubMed ID: 30466595
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide identification of loci affecting seed glucosinolate contents in Brassica napus L.
    Wei D; Cui Y; Mei J; Qian L; Lu K; Wang ZM; Li J; Tang Q; Qian W
    J Integr Plant Biol; 2019 May; 61(5):611-623. PubMed ID: 30183130
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stable, Environmental Specific and Novel QTL Identification as Well as Genetic Dissection of Fatty Acid Metabolism in
    Bao B; Chao H; Wang H; Zhao W; Zhang L; Raboanatahiry N; Wang X; Wang B; Jia H; Li M
    Front Plant Sci; 2018; 9():1018. PubMed ID: 30065738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. QTL Mapping of Seed Glucosinolate Content Responsible for Environment in
    He Y; Fu Y; Hu D; Wei D; Qian W
    Front Plant Sci; 2018; 9():891. PubMed ID: 29997644
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.