These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3584150)

  • 1. Effect of material damping on bone remodelling.
    Misra JC; Samanta S
    J Biomech; 1987; 20(3):241-9. PubMed ID: 3584150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An analytical and numerical study of the stability of bone remodelling theories: dependence on microstructural stimulus.
    Harrigan TP; Hamilton JJ
    J Biomech; 1992 May; 25(5):477-88. PubMed ID: 1592853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of bone adaptation using damage accumulation.
    Prendergast PJ; Taylor D
    J Biomech; 1994 Aug; 27(8):1067-76. PubMed ID: 8089161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guidelines for external fixation frame rigidity and stresses.
    Huiskes R; Chao EY
    J Orthop Res; 1986; 4(1):68-75. PubMed ID: 3950810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the elastic symmetry of bone and other materials.
    Cowin SC; Mehrabadi MM
    J Biomech; 1989; 22(6-7):503-15. PubMed ID: 2681216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of material constants and hydraulic strengthening of trabecular bone through an orthotropic structural model.
    Deligianni DD; Missirlis YF; Kafka V
    Biorheology; 1994; 31(3):245-57. PubMed ID: 8729485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What is the importance of multiphysical phenomena in bone remodelling signals expression? A multiscale perspective.
    Lemaire T; Capiez-Lernout E; Kaiser J; Naili S; Sansalone V
    J Mech Behav Biomed Mater; 2011 Aug; 4(6):909-20. PubMed ID: 21616472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structural mathematical model for the viscoelastic anisotropic behaviour of trabecular bone.
    Kafka V; Jírová J
    Biorheology; 1983; 20(6):795-805. PubMed ID: 6661530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A finite difference model of load-induced fluid displacements within bone under mechanical loading.
    Steck R; Niederer P; Knothe Tate ML
    Med Eng Phys; 2000 Mar; 22(2):117-25. PubMed ID: 10854965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A theoretical model of the effect of continuum damage on a bone adaptation model.
    Ramtani S; Zidi M
    J Biomech; 2001 Apr; 34(4):471-9. PubMed ID: 11266670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three rules for bone adaptation to mechanical stimuli.
    Turner CH
    Bone; 1998 Nov; 23(5):399-407. PubMed ID: 9823445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical modeling of the stress adaptation process in bone.
    Cowin SC
    Calcif Tissue Int; 1984; 36 Suppl 1():S98-103. PubMed ID: 6430529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study.
    Rémond A; Naïli S; Lemaire T
    Biomech Model Mechanobiol; 2008 Dec; 7(6):487-95. PubMed ID: 17990014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computational method for stress analysis of adaptive elastic materials with a view toward applications in strain-induced bone remodeling.
    Hart RT; Davy DT; Heiple KG
    J Biomech Eng; 1984 Nov; 106(4):342-50. PubMed ID: 6513529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A generic 3-dimensional system to mimic trabecular bone surface adaptation.
    Nowak M
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):313-7. PubMed ID: 17132617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poroelastic finite element analysis of a bone specimen under cyclic loading.
    Manfredini P; Cocchetti G; Maier G; Redaelli A; Montevecchi FM
    J Biomech; 1999 Feb; 32(2):135-44. PubMed ID: 10052918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact anisotropic bone: elastic constants, in vitro aging effects and numerical results of a mathematical model.
    Ambardar A; Ferris CD
    Acta Biol Acad Sci Hung; 1978; 29(1):81-94. PubMed ID: 754417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bone remodelling model coupling micro-damage growth and repair by 3D BMU-activity.
    García-Aznar JM; Rueberg T; Doblare M
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):147-67. PubMed ID: 15942795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An analytical model of Pauwels' functional adaptation mechanism in bone.
    Firoozbakhsh K; Cowin SC
    J Biomech Eng; 1981 Nov; 103(4):246-52. PubMed ID: 7311490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress-dependent finite growth in soft elastic tissues.
    Rodriguez EK; Hoger A; McCulloch AD
    J Biomech; 1994 Apr; 27(4):455-67. PubMed ID: 8188726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.