These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 35841558)

  • 1. Fluxonium: An Alternative Qubit Platform for High-Fidelity Operations.
    Bao F; Deng H; Ding D; Gao R; Gao X; Huang C; Jiang X; Ku HS; Li Z; Ma X; Ni X; Qin J; Song Z; Sun H; Tang C; Wang T; Wu F; Xia T; Yu W; Zhang F; Zhang G; Zhang X; Zhou J; Zhu X; Shi Y; Chen J; Zhao HH; Deng C
    Phys Rev Lett; 2022 Jul; 129(1):010502. PubMed ID: 35841558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Contrast ZZ Interaction Using Superconducting Qubits with Opposite-Sign Anharmonicity.
    Zhao P; Xu P; Lan D; Chu J; Tan X; Yu H; Yu Y
    Phys Rev Lett; 2020 Nov; 125(20):200503. PubMed ID: 33258656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation of a Toffoli gate with superconducting circuits.
    Fedorov A; Steffen L; Baur M; da Silva MP; Wallraff A
    Nature; 2011 Dec; 481(7380):170-2. PubMed ID: 22170609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superconducting quantum circuits at the surface code threshold for fault tolerance.
    Barends R; Kelly J; Megrant A; Veitia A; Sank D; Jeffrey E; White TC; Mutus J; Fowler AG; Campbell B; Chen Y; Chen Z; Chiaro B; Dunsworth A; Neill C; O'Malley P; Roushan P; Vainsencher A; Wenner J; Korotkov AN; Cleland AN; Martinis JM
    Nature; 2014 Apr; 508(7497):500-3. PubMed ID: 24759412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum computer-aided design for advanced superconducting qubit: Plasmonium.
    Liu FM; Wang C; Chen MC; Chen H; Li SW; Shang ZX; Ying C; Wang JW; Huo YH; Peng CZ; Zhu X; Lu CY; Pan JW
    Sci Bull (Beijing); 2023 Aug; 68(15):1625-1631. PubMed ID: 37453825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A two-qubit logic gate in silicon.
    Veldhorst M; Yang CH; Hwang JC; Huang W; Dehollain JP; Muhonen JT; Simmons S; Laucht A; Hudson FE; Itoh KM; Morello A; Dzurak AS
    Nature; 2015 Oct; 526(7573):410-4. PubMed ID: 26436453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic Engineering of Molecular Qubits for High-Speed, High-Fidelity Single Qubit Gates.
    Jones MT; Monir MS; Krauth FN; Macha P; Hsueh YL; Worrall A; Keizer JG; Kranz L; Gorman SK; Chung Y; Rahman R; Simmons MY
    ACS Nano; 2023 Nov; 17(22):22601-22610. PubMed ID: 37930801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving qubit coherence using closed-loop feedback.
    Vepsäläinen A; Winik R; Karamlou AH; Braumüller J; Paolo AD; Sung Y; Kannan B; Kjaergaard M; Kim DK; Melville AJ; Niedzielski BM; Yoder JL; Gustavsson S; Oliver WD
    Nat Commun; 2022 Apr; 13(1):1932. PubMed ID: 35410327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast universal quantum gate above the fault-tolerance threshold in silicon.
    Noiri A; Takeda K; Nakajima T; Kobayashi T; Sammak A; Scappucci G; Tarucha S
    Nature; 2022 Jan; 601(7893):338-342. PubMed ID: 35046603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fault-tolerant operation of a logical qubit in a diamond quantum processor.
    Abobeih MH; Wang Y; Randall J; Loenen SJH; Bradley CE; Markham M; Twitchen DJ; Terhal BM; Taminiau TH
    Nature; 2022 Jun; 606(7916):884-889. PubMed ID: 35512730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance superconducting quantum processors via laser annealing of transmon qubits.
    Zhang EJ; Srinivasan S; Sundaresan N; Bogorin DF; Martin Y; Hertzberg JB; Timmerwilke J; Pritchett EJ; Yau JB; Wang C; Landers W; Lewandowski EP; Narasgond A; Rosenblatt S; Keefe GA; Lauer I; Rothwell MB; McClure DT; Dial OE; Orcutt JS; Brink M; Chow JM
    Sci Adv; 2022 May; 8(19):eabi6690. PubMed ID: 35559683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Native Approach to Controlled-Z Gates in Inductively Coupled Fluxonium Qubits.
    Ma X; Zhang G; Wu F; Bao F; Chang X; Chen J; Deng H; Gao R; Gao X; Hu L; Ji H; Ku HS; Lu K; Ma L; Mao L; Song Z; Sun H; Tang C; Wang F; Wang H; Wang T; Xia T; Ying M; Zhan H; Zhou T; Zhu M; Zhu Q; Shi Y; Zhao HH; Deng C
    Phys Rev Lett; 2024 Feb; 132(6):060602. PubMed ID: 38394561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits.
    Chow JM; Gambetta JM; Córcoles AD; Merkel ST; Smolin JA; Rigetti C; Poletto S; Keefe GA; Rothwell MB; Rozen JR; Ketchen MB; Steffen M
    Phys Rev Lett; 2012 Aug; 109(6):060501. PubMed ID: 23006254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds.
    Place APM; Rodgers LVH; Mundada P; Smitham BM; Fitzpatrick M; Leng Z; Premkumar A; Bryon J; Vrajitoarea A; Sussman S; Cheng G; Madhavan T; Babla HK; Le XH; Gang Y; Jäck B; Gyenis A; Yao N; Cava RJ; de Leon NP; Houck AA
    Nat Commun; 2021 Mar; 12(1):1779. PubMed ID: 33741989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of two-qubit algorithms with a superconducting quantum processor.
    DiCarlo L; Chow JM; Gambetta JM; Bishop LS; Johnson BR; Schuster DI; Majer J; Blais A; Frunzio L; Girvin SM; Schoelkopf RJ
    Nature; 2009 Jul; 460(7252):240-4. PubMed ID: 19561592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fidelity benchmarks for two-qubit gates in silicon.
    Huang W; Yang CH; Chan KW; Tanttu T; Hensen B; Leon RCC; Fogarty MA; Hwang JCC; Hudson FE; Itoh KM; Morello A; Laucht A; Dzurak AS
    Nature; 2019 May; 569(7757):532-536. PubMed ID: 31086337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A two-qubit gate between phosphorus donor electrons in silicon.
    He Y; Gorman SK; Keith D; Kranz L; Keizer JG; Simmons MY
    Nature; 2019 Jul; 571(7765):371-375. PubMed ID: 31316197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gatemon Benchmarking and Two-Qubit Operations.
    Casparis L; Larsen TW; Olsen MS; Kuemmeth F; Krogstrup P; Nygård J; Petersson KD; Marcus CM
    Phys Rev Lett; 2016 Apr; 116(15):150505. PubMed ID: 27127949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Initialization of Fluxonium Qubits based on Auxiliary Energy Levels.
    Wang T; Wu F; Wang F; Ma X; Zhang G; Chen J; Deng H; Gao R; Hu R; Ma L; Song Z; Xia T; Ying M; Zhan H; Zhao HH; Deng C
    Phys Rev Lett; 2024 Jun; 132(23):230601. PubMed ID: 38905646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalable Method for Eliminating Residual ZZ Interaction between Superconducting Qubits.
    Ni Z; Li S; Zhang L; Chu J; Niu J; Yan T; Deng X; Hu L; Li J; Zhong Y; Liu S; Yan F; Xu Y; Yu D
    Phys Rev Lett; 2022 Jul; 129(4):040502. PubMed ID: 35938995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.