BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 35841890)

  • 41. Auxin acts in xylem-associated or medullary cells to mediate apical dominance.
    Booker J; Chatfield S; Leyser O
    Plant Cell; 2003 Feb; 15(2):495-507. PubMed ID: 12566587
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An Experimental System for Examining Phototropic Response of Gametophytic Shoots in the Moss Physcomitrella patens.
    Bao L; Yamamoto KT; Fujita T
    Methods Mol Biol; 2019; 1924():45-51. PubMed ID: 30694466
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transcriptomic evidence for the evolution of shoot meristem function in sporophyte-dominant land plants through concerted selection of ancestral gametophytic and sporophytic genetic programs.
    Frank MH; Scanlon MJ
    Mol Biol Evol; 2015 Feb; 32(2):355-67. PubMed ID: 25371433
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Strigolactones, a novel class of plant hormone controlling shoot branching.
    Rameau C
    C R Biol; 2010 Apr; 333(4):344-9. PubMed ID: 20371109
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spatial Regulation of the Gene Expression Response to Shade in Arabidopsis Seedlings.
    Nito K; Kajiyama T; Unten-Kobayashi J; Fujii A; Mochizuki N; Kambara H; Nagatani A
    Plant Cell Physiol; 2015 Jul; 56(7):1306-19. PubMed ID: 25907567
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Class III HD-Zip activity coordinates leaf development in Physcomitrella patens.
    Yip HK; Floyd SK; Sakakibara K; Bowman JL
    Dev Biol; 2016 Nov; 419(1):184-197. PubMed ID: 26808209
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ethylene controls three-dimensional growth involving reduced auxin levels in the moss Physcomitrium patens.
    Wang Y; Jiang L; Kong D; Meng J; Song M; Cui W; Song Y; Wang X; Liu J; Wang R; He Y; Chang C; Ju C
    New Phytol; 2024 Jun; 242(5):1996-2010. PubMed ID: 38571393
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Temporal integration of auxin information for the regulation of patterning.
    Galvan-Ampudia CS; Cerutti G; Legrand J; Brunoud G; Martin-Arevalillo R; Azais R; Bayle V; Moussu S; Wenzl C; Jaillais Y; Lohmann JU; Godin C; Vernoux T
    Elife; 2020 May; 9():. PubMed ID: 32379043
    [TBL] [Abstract][Full Text] [Related]  

  • 49. How Strigolactone Shapes Shoot Architecture.
    Khuvung K; Silva Gutierrez FAO; Reinhardt D
    Front Plant Sci; 2022; 13():889045. PubMed ID: 35903239
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A reappraisal of the role of abscisic acid and its interaction with auxin in apical dominance.
    Cline MG; Oh C
    Ann Bot; 2006 Oct; 98(4):891-7. PubMed ID: 16882681
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The MOSS Physcomitrella patens reproductive organ development is highly organized, affected by the two SHI/STY genes and by the level of active auxin in the SHI/STY expression domain.
    Landberg K; Pederson ER; Viaene T; Bozorg B; Friml J; Jönsson H; Thelander M; Sundberg E
    Plant Physiol; 2013 Jul; 162(3):1406-19. PubMed ID: 23669745
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Auxin Biology in Bryophyta: A Simple Platform with Versatile Functions.
    Suzuki H; Kohchi T; Nishihama R
    Cold Spring Harb Perspect Biol; 2021 Mar; 13(3):. PubMed ID: 33431584
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens.
    Eklund DM; Thelander M; Landberg K; Ståldal V; Nilsson A; Johansson M; Valsecchi I; Pederson ER; Kowalczyk M; Ljung K; Ronne H; Sundberg E
    Development; 2010 Apr; 137(8):1275-84. PubMed ID: 20223761
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of the Development in Physcomitrium (Physcomitrella) patens implicates the functional differentiation of plant RNase H1s.
    Chen S; Dong X; Yang Z; Hou X; Liu L
    Plant Sci; 2021 Dec; 313():111070. PubMed ID: 34763863
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Physcomitrella patens auxin-resistant mutants affect conserved elements of an auxin-signaling pathway.
    Prigge MJ; Lavy M; Ashton NW; Estelle M
    Curr Biol; 2010 Nov; 20(21):1907-12. PubMed ID: 20951049
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cryptochrome light signals control development to suppress auxin sensitivity in the moss Physcomitrella patens.
    Imaizumi T; Kadota A; Hasebe M; Wada M
    Plant Cell; 2002 Feb; 14(2):373-86. PubMed ID: 11884681
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reevaluating concepts of apical dominance and the control of axillary bud outgrowth.
    Napoli CA; Beveridge CA; Snowden KC
    Curr Top Dev Biol; 1999; 44():127-69. PubMed ID: 9891879
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CsBRC1 inhibits axillary bud outgrowth by directly repressing the auxin efflux carrier
    Shen J; Zhang Y; Ge D; Wang Z; Song W; Gu R; Che G; Cheng Z; Liu R; Zhang X
    Proc Natl Acad Sci U S A; 2019 Aug; 116(34):17105-17114. PubMed ID: 31391306
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Auxin and cytokinin related gene expression during active shoot growth and latent bud paradormancy in Vitis riparia grapevine.
    He D; Mathiason K; Fennell A
    J Plant Physiol; 2012 Apr; 169(6):643-8. PubMed ID: 22321693
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phototropism in gametophytic shoots of the moss Physcomitrella patens.
    Bao L; Yamamoto KT; Fujita T
    Plant Signal Behav; 2015; 10(3):e1010900. PubMed ID: 25848889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.