These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35841952)

  • 1. ZeBraInspector, a platform for the automated segmentation and analysis of body and brain volumes in whole 5 days post-fertilization zebrafish following simultaneous visualization with identical orientations.
    Lempereur S; Machado E; Licata F; Simion M; Buzer L; Robineau I; Hémon J; Banerjee P; De Crozé N; Léonard M; Affaticati P; Talbot H; Joly JS
    Dev Biol; 2022 Oct; 490():86-99. PubMed ID: 35841952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Standardized mounting method of (zebrafish) embryos using a 3D-printed stamp for high-content, semi-automated confocal imaging.
    Kleinhans DS; Lecaudey V
    BMC Biotechnol; 2019 Oct; 19(1):68. PubMed ID: 31640669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Live imaging of the zebrafish embryonic brain by confocal microscopy.
    Graeden E; Sive H
    J Vis Exp; 2009 Apr; (26):. PubMed ID: 19339963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-cost silicone imaging casts for zebrafish embryos and larvae.
    Masselink W; Wong JC; Liu B; Fu J; Currie PD
    Zebrafish; 2014 Feb; 11(1):26-31. PubMed ID: 24237049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Layered Mounting Method for Extended Time-Lapse Confocal Microscopy of Whole Zebrafish Embryos.
    Upadhyay S; Vergara L; Shah P; Gustafsson JÅ; Kakadiaris I; Bondesson M
    J Vis Exp; 2020 Jan; (155):. PubMed ID: 32009650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos.
    Kagemann L; Ishikawa H; Zou J; Charukamnoetkanok P; Wollstein G; Townsend KA; Gabriele ML; Bahary N; Wei X; Fujimoto JG; Schuman JS
    Mol Vis; 2008; 14():2157-70. PubMed ID: 19052656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of automated imaging and analysis for zebrafish chemical screens.
    Vogt A; Codore H; Day BW; Hukriede NA; Tsang M
    J Vis Exp; 2010 Jun; (40):. PubMed ID: 20613708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analytical tool that quantifies cellular morphology changes from three-dimensional fluorescence images.
    Haass-Koffler CL; Naeemuddin M; Bartlett SE
    J Vis Exp; 2012 Aug; (66):e4233. PubMed ID: 22951512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging volumetric dynamics at high speed in mouse and zebrafish brain with confocal light field microscopy.
    Zhang Z; Bai L; Cong L; Yu P; Zhang T; Shi W; Li F; Du J; Wang K
    Nat Biotechnol; 2021 Jan; 39(1):74-83. PubMed ID: 32778840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-photon axotomy and time-lapse confocal imaging in live zebrafish embryos.
    O'Brien GS; Rieger S; Martin SM; Cavanaugh AM; Portera-Cailliau C; Sagasti A
    J Vis Exp; 2009 Feb; (24):. PubMed ID: 19229185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo whole-brain imaging of zebrafish larvae using three-dimensional fluorescence microscopy.
    Cho ES; Han S; Kim G; Eom M; Lee KH; Kim CH; Yoon YG
    J Vis Exp; 2023 Apr; (194):. PubMed ID: 37184275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyzing craniofacial morphogenesis in zebrafish using 4D confocal microscopy.
    McGurk PD; Lovely CB; Eberhart JK
    J Vis Exp; 2014 Jan; (83):e51190. PubMed ID: 24514435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Tissue Clearing Method for Neuronal Imaging from Mesoscopic to Microscopic Scales.
    Yamauchi K; Okamoto S; Takahashi M; Koike M; Furuta T; Hioki H
    J Vis Exp; 2022 May; (183):. PubMed ID: 35635469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current Status of Tissue Clearing and the Path Forward in Neuroscience.
    Zhao J; Lai HM; Qi Y; He D; Sun H
    ACS Chem Neurosci; 2021 Jan; 12(1):5-29. PubMed ID: 33326739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cells tracking in a live zebrafish embryo.
    Melani C; Campana M; Lombardot B; Rizzi B; Veronesi F; Zanella C; Bourgine P; Mikula K; Peyriéras N; Sarti A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1631-4. PubMed ID: 18002285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution Confocal Imaging of the Blood-brain Barrier: Imaging, 3D Reconstruction, and Quantification of Transcytosis.
    Villaseñor R; Collin L
    J Vis Exp; 2017 Nov; (129):. PubMed ID: 29286366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel mounting of biological tissue samples for 3D model reconstruction using tandem scanning electron microscopy and photogrammetry software.
    Peguero RL; Bimbo-Szuhai A; Massaro IT; Roach KD; Corbo CP
    Microsc Res Tech; 2022 Aug; 85(8):2924-2930. PubMed ID: 35531967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 3D Searchable Database of Transgenic Zebrafish Gal4 and Cre Lines for Functional Neuroanatomy Studies.
    Marquart GD; Tabor KM; Brown M; Strykowski JL; Varshney GK; LaFave MC; Mueller T; Burgess SM; Higashijima S; Burgess HA
    Front Neural Circuits; 2015; 9():78. PubMed ID: 26635538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualizing morphogenesis in transgenic zebrafish embryos using BODIPY TR methyl ester dye as a vital counterstain for GFP.
    Cooper MS; Szeto DP; Sommers-Herivel G; Topczewski J; Solnica-Krezel L; Kang HC; Johnson I; Kimelman D
    Dev Dyn; 2005 Feb; 232(2):359-68. PubMed ID: 15614774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confocal microscopic analysis of morphogenetic movements.
    Cooper MS; D'Amico LA; Henry CA
    Methods Cell Biol; 1999; 59():179-204. PubMed ID: 9891361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.