These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 35841952)

  • 21. Visualizing morphogenesis in transgenic zebrafish embryos using BODIPY TR methyl ester dye as a vital counterstain for GFP.
    Cooper MS; Szeto DP; Sommers-Herivel G; Topczewski J; Solnica-Krezel L; Kang HC; Johnson I; Kimelman D
    Dev Dyn; 2005 Feb; 232(2):359-68. PubMed ID: 15614774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Confocal microscopic analysis of morphogenetic movements.
    Cooper MS; D'Amico LA; Henry CA
    Methods Cell Biol; 1999; 59():179-204. PubMed ID: 9891361
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated identification of neurons in 3D confocal datasets from zebrafish brainstem.
    Kamali M; Day LJ; Brooks DH; Zhou X; O'Malley DM
    J Microsc; 2009 Jan; 233(1):114-31. PubMed ID: 19196418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Attenuation correction in confocal laser microscopes: a novel two-view approach.
    Can A; Al-Kofahi O; Lasek S; Szarowski DH; Turner JN; Roysam B
    J Microsc; 2003 Jul; 211(Pt 1):67-79. PubMed ID: 12839553
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Early, nonlethal ploidy and genome size quantification using confocal microscopy in zebrafish embryos.
    Small CD; Davis JP; Crawford BD; Benfey TJ
    J Exp Zool B Mol Dev Evol; 2021 Sep; 336(6):496-510. PubMed ID: 34254444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Imaging and 3D reconstruction of cerebrovascular structures in embryonic zebrafish.
    Ethell DW; Cameron DJ
    J Vis Exp; 2014 Apr; (86):. PubMed ID: 24797110
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Facilitating drug discovery: an automated high-content inflammation assay in zebrafish.
    Wittmann C; Reischl M; Shah AH; Mikut R; Liebel U; Grabher C
    J Vis Exp; 2012 Jul; (65):e4203. PubMed ID: 22825322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combined confocal and wide-field high-resolution cytometry of fluorescent in situ hybridization-stained cells.
    Kozubek M; Kozubek S; Lukásová E; Bártová E; Skalníková M; Matula P; Matula P; Jirsová P; Cafourková A; Koutná I
    Cytometry; 2001 Sep; 45(1):1-12. PubMed ID: 11598941
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D imaging of human epidermis micromorphology by combining fluorescent dye, optical clearing and confocal microscopy.
    Fernandez E; Marull-Tufeu S
    Skin Res Technol; 2019 Sep; 25(5):735-742. PubMed ID: 31074525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A multi-model approach to simultaneous segmentation and classification of heterogeneous populations of cell nuclei in 3D confocal microscope images.
    Lin G; Chawla MK; Olson K; Barnes CA; Guzowski JF; Bjornsson C; Shain W; Roysam B
    Cytometry A; 2007 Sep; 71(9):724-36. PubMed ID: 17654650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visualizing and quantifying Pseudomonas aeruginosa infection in the hindbrain ventricle of zebrafish using confocal laser scanning microscopy.
    Rocker AJ; Weiss AR; Lam JS; Van Raay TJ; Khursigara CM
    J Microbiol Methods; 2015 Oct; 117():85-94. PubMed ID: 26188283
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A direction-selective local-thresholding method, DSLT, in combination with a dye-based method for automated three-dimensional segmentation of cells and airspaces in developing leaves.
    Kawase T; Sugano SS; Shimada T; Hara-Nishimura I
    Plant J; 2015 Jan; 81(2):357-66. PubMed ID: 25440085
    [TBL] [Abstract][Full Text] [Related]  

  • 33. HeNe laser (633 nm)-coupled confocal microscope allows simulating magnetic resonance imaging/computed tomography scan of the brain and eye: a noninvasive optical approach applicable to small laboratory animals.
    Zheng PP; Romme E; van der Spek PJ; Dirven CM; Willemsen R; Kros JM
    Zebrafish; 2011 Jun; 8(2):83-5. PubMed ID: 21682601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel cell nuclei segmentation method for 3D C. elegans embryonic time-lapse images.
    Chen L; Chan LL; Zhao Z; Yan H
    BMC Bioinformatics; 2013 Nov; 14():328. PubMed ID: 24252066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reconstruction and representation of caudal vasculature of zebrafish embryo from confocal scanning laser fluorescence microscopic images.
    Feng J; Cheng SH; Chan PK; Ip HH
    Comput Biol Med; 2005 Dec; 35(10):915-31. PubMed ID: 16263106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo imaging and quantitative analysis of changes in axon length using transgenic zebrafish embryos.
    Kanungo J; Lantz S; Paule MG
    Neurotoxicol Teratol; 2011; 33(6):618-23. PubMed ID: 21903162
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Whole-Brain Image Analysis and Anatomical Atlas 3D Generation Using MagellanMapper.
    Young DM; Duhn C; Gilson M; Nojima M; Yuruk D; Kumar A; Yu W; Sanders SJ
    Curr Protoc Neurosci; 2020 Dec; 94(1):e104. PubMed ID: 32981139
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time-lapse live imaging of clonally related neural progenitor cells in the developing zebrafish forebrain.
    Dong Z; Wagle M; Guo S
    J Vis Exp; 2011 Apr; (50):. PubMed ID: 21505407
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Correlative light and volume electron microscopy: using focused ion beam scanning electron microscopy to image transient events in model organisms.
    Bushby AJ; Mariggi G; Armer HE; Collinson LM
    Methods Cell Biol; 2012; 111():357-82. PubMed ID: 22857937
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An automatic segmentation algorithm for 3D cell cluster splitting using volumetric confocal images.
    Indhumathi C; Cai YY; Guan YQ; Opas M
    J Microsc; 2011 Jul; 243(1):60-76. PubMed ID: 21288236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.