These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35841958)

  • 1. A facile approach to cellulose/multi-walled carbon nanotube gels-Structure, formation process and adsorption to methylene blue.
    Geng H; Qin M; Li J
    Int J Biol Macromol; 2022 Sep; 217():417-427. PubMed ID: 35841958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A facile approach to light weight, high porosity cellulose aerogels.
    Geng H
    Int J Biol Macromol; 2018 Oct; 118(Pt A):921-931. PubMed ID: 29964109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of cellulose/N,N'-methylene bisacrylamide/graphene oxide hybrid hydrogels and aerogels.
    Geng H
    Carbohydr Polym; 2018 Sep; 196():289-298. PubMed ID: 29891299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A one-step approach to make cellulose-based hydrogels of various transparency and swelling degrees.
    Geng H
    Carbohydr Polym; 2018 Apr; 186():208-216. PubMed ID: 29455980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct regeneration of hydrogels based on lemon peel and its isolated microcrystalline cellulose: Characterization and application for methylene blue adsorption.
    Dai H; Chen Y; Ma L; Zhang Y; Cui B
    Int J Biol Macromol; 2021 Nov; 191():129-138. PubMed ID: 34537294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose aerogels from aqueous alkali hydroxide-urea solution.
    Cai J; Kimura S; Wada M; Kuga S; Zhang L
    ChemSusChem; 2008; 1(1-2):149-54. PubMed ID: 18605678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology and pore characteristics of bacterial cellulose/multiwalled carbon nanotube composite cryogels.
    Yun YS; Bak H; Cho SY; Jin HJ
    J Nanosci Nanotechnol; 2011 Jan; 11(1):806-9. PubMed ID: 21446550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and Characterization of Cellulose Composite Hydrogels From Tea Residue and Single-Walled Carbon Nanotube Oxides and Its Potential Applications.
    Liu Z; Li D
    Front Chem; 2021; 9():651566. PubMed ID: 34017817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A facile approach to fabricate porous nanocomposite gels based on partially hydrolyzed polyacrylamide and cellulose nanocrystals for adsorbing methylene blue at low concentrations.
    Zhou C; Lee S; Dooley K; Wu Q
    J Hazard Mater; 2013 Dec; 263 Pt 2():334-41. PubMed ID: 23958139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterisation of CNF/MWCNT carbon aerogel as efficient adsorbents.
    Xu Z; Jiang X; Tan S; Wu W; Shi J; Zhou H; Chen P
    IET Nanobiotechnol; 2018 Jun; 12(4):500-504. PubMed ID: 29768237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile preparation of biocompatible macroporous chitosan hydrogel by hydrothermal reaction of a mixture of chitosan-succinic acid-urea.
    Govindaraj P; Abathodharanan N; Ravishankar K; Raghavachari D
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109845. PubMed ID: 31500034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sugarcane cellulose-based composite hydrogel enhanced by g-C
    Chen Z; Pan Y; Cai P
    Int J Biol Macromol; 2022 Apr; 205():37-48. PubMed ID: 35181325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gelation of hydroxyethyl cellulose aqueous solution induced by addition of colloidal silica nanoparticles.
    Gong T; Hou Y; Yang X; Guo Y
    Int J Biol Macromol; 2019 Aug; 134():547-556. PubMed ID: 31100393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis.
    Ai L; Zhang C; Liao F; Wang Y; Li M; Meng L; Jiang J
    J Hazard Mater; 2011 Dec; 198():282-90. PubMed ID: 22040800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels.
    Liebner F; Haimer E; Wendland M; Neouze MA; Schlufter K; Miethe P; Heinze T; Potthast A; Rosenau T
    Macromol Biosci; 2010 Apr; 10(4):349-52. PubMed ID: 20166232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the adsorption behaviors for methylene blue on two renewable gels with different physical state.
    Qiu J; Fan P; Feng Y; Liu F; Ling C; Li A
    Environ Pollut; 2019 Nov; 254(Pt B):113117. PubMed ID: 31476673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfo-functional 3D porous cellulose/graphene oxide composites for highly efficient removal of methylene blue and tetracycline from water.
    Wang S; Ma X; Zheng P
    Int J Biol Macromol; 2019 Nov; 140():119-128. PubMed ID: 31419562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of methylene blue dye from aqueous solution by adsorption onto sodium humate/polyacrylamide/clay hybrid hydrogels.
    Yi JZ; Zhang LM
    Bioresour Technol; 2008 May; 99(7):2182-6. PubMed ID: 17601732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective biosorption mechanism of methylene blue by a novel and reusable sugar beet pulp cellulose/sodium alginate/iron hydroxide composite hydrogel.
    Fang Y; Liu Q; Zhu S
    Int J Biol Macromol; 2021 Oct; 188():993-1002. PubMed ID: 34358601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of xylan-gelatin cross-linked reusable hydrogel for the adsorption of methylene blue.
    Seera SDK; Kundu D; Gami P; Naik PK; Banerjee T
    Carbohydr Polym; 2021 Mar; 256():117520. PubMed ID: 33483041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.