These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35842163)

  • 1. Creating coagulants through the combined use of ash and brine.
    Hao X; Wang X; Shi C; van Loosdrecht MCM; Wu Y
    Sci Total Environ; 2022 Nov; 845():157344. PubMed ID: 35842163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergy of phosphate recovery from sludge-incinerated ash and coagulant production by desalinated brine.
    Wang X; Shi C; Hao X; van Loosdrecht MCM; Wu Y
    Water Res; 2023 Mar; 231():119658. PubMed ID: 36708629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery potential of German sewage sludge ash.
    Krüger O; Adam C
    Waste Manag; 2015 Nov; 45():400-6. PubMed ID: 25697389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soluble carbon source recovery using preconditioning coagulants for applicable short-term fermentation of waste activated sludge in WWTPs.
    Huan CA; Wang Q; Li X; Du C; Meng Q; Kang X; Liu W
    Environ Res; 2024 May; 248():118409. PubMed ID: 38311203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of organic and inorganic flocculants on the formation of PCDD/Fs during sewage sludge incineration.
    Lin X; Li X; Lu S; Wang F; Chen T; Yan J
    Environ Sci Pollut Res Int; 2015 Oct; 22(19):14629-36. PubMed ID: 25028327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow analysis of major and trace elements in residues from large-scale sewage sludge incineration.
    Yu S; Zhang H; Lü F; Shao L; He P
    J Environ Sci (China); 2021 Apr; 102():99-109. PubMed ID: 33637269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorus recovery and reuse potential from smouldered sewage sludge ash.
    Fournie T; Rashwan TL; Switzer C; Gerhard JI
    Waste Manag; 2022 Jan; 137():241-252. PubMed ID: 34801957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment.
    Havukainen J; Nguyen MT; Hermann L; Horttanainen M; Mikkilä M; Deviatkin I; Linnanen L
    Waste Manag; 2016 Mar; 49():221-229. PubMed ID: 26810030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decarbonized and circular brine management/valorization for water & valuable resource recovery via minimal/zero liquid discharge (MLD/ZLD) strategies.
    Panagopoulos A; Giannika V
    J Environ Manage; 2022 Dec; 324():116239. PubMed ID: 36174468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sewage sludge ash recovery as valuable raw material for chemical stabilization of leachable heavy metals.
    Benassi L; Zanoletti A; Depero LE; Bontempi E
    J Environ Manage; 2019 Sep; 245():464-470. PubMed ID: 31170635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leachability of heavy metals from lightweight aggregates made with sewage sludge and municipal solid waste incineration fly ash.
    Wei N
    Int J Environ Res Public Health; 2015 May; 12(5):4992-5005. PubMed ID: 25961800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of municipal waste incineration bottom ash and water treatment sludge to water permeable pavement materials.
    Lin CF; Wu CH; Ho HM
    Waste Manag; 2006; 26(9):970-8. PubMed ID: 16293405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical, mineralogical and morphological changes in weathered coal fly ash: a case study of a brine impacted wet ash dump.
    Eze CP; Nyale SM; Akinyeye RO; Gitari WM; Akinyemi SA; Fatoba OO; Petrik LF
    J Environ Manage; 2013 Nov; 129():479-92. PubMed ID: 24013557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilization of heavy metals in municipal solid waste incineration fly ash via hydrothermal treatment with coal fly ash.
    Zhang Z; Wang Y; Zhang Y; Shen B; Ma J; Liu L
    Waste Manag; 2022 May; 144():285-293. PubMed ID: 35427900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sewage sludge ash (SSA) from large and small incineration plants as a potential source of phosphorus - Polish case study.
    Smol M; Kulczycka J; Kowalski Z
    J Environ Manage; 2016 Dec; 184(Pt 3):617-628. PubMed ID: 27789088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An overview of brine management: Emerging desalination technologies, life cycle assessment, and metal recovery methodologies.
    Bello AS; Zouari N; Da'ana DA; Hahladakis JN; Al-Ghouti MA
    J Environ Manage; 2021 Jun; 288():112358. PubMed ID: 33770726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parametric study of coagulant recovery from water treatment sludge towards water circular economy.
    Shawal NBM; Razali NA; Hairom NHH; Yatim NII; Rasit N; Harun MHC; Kasan N; Hamzah S
    Water Sci Technol; 2023 Dec; 88(12):3142-3150. PubMed ID: 38154800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus speciation in sewage sludge from three municipal wastewater treatment plants in Sweden and their ashes after incineration.
    Nilsson C; Sjöberg V; Grandin A; Karlsson S; Allard B; von Kronhelm T
    Waste Manag Res; 2022 Aug; 40(8):1267-1276. PubMed ID: 34920692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison between sulfuric acid and oxalic acid leaching with subsequent purification and precipitation for phosphorus recovery from sewage sludge incineration ash.
    Liang S; Chen H; Zeng X; Li Z; Yu W; Xiao K; Hu J; Hou H; Liu B; Tao S; Yang J
    Water Res; 2019 Aug; 159():242-251. PubMed ID: 31100578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fate of heavy metals during co-disposal of municipal solid waste incineration fly ash and sewage sludge by hydrothermal coupling pyrolysis process.
    Chen Z; Yu G; Wang Y; Wang X
    Waste Manag; 2020 May; 109():28-37. PubMed ID: 32380379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.