These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35842453)

  • 1. Value-added fabrication of NiO-doped CuO nanoflakes from waste flexible printed circuit board for advanced photocatalytic application.
    Hossain R; Nekouei RK; Al Mahmood A; Sahajwalla V
    Sci Rep; 2022 Jul; 12(1):12171. PubMed ID: 35842453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilising problematic waste to detect toxic gas release in the environment: fabricating a NiO doped CuO nanoflake based ammonia sensor from e-waste.
    Hossain R; Hassan K; Sahajwalla V
    Nanoscale Adv; 2022 Sep; 4(19):4066-4079. PubMed ID: 36285214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genesis of copper oxide nanoparticles from waste printed circuit boards and evaluation of their photocatalytic activity.
    Gautam P; De AK; Sinha I; Behera CK; Singh KK
    Environ Res; 2023 Jul; 229():115951. PubMed ID: 37084944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Waste remediation: Low-temperature synthesis of hybrid Cu(OH)
    Gautam P; De AK; Rao MD; Sinha I; Behera CK; Singh KK
    Environ Sci Pollut Res Int; 2024 Jun; 31(29):41624-41637. PubMed ID: 37542015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Promising Three-Step Heat Treatment Process for Preparing CuO Films for Photocatalytic Hydrogen Evolution from Water.
    Kyesmen PI; Nombona N; Diale M
    ACS Omega; 2021 Dec; 6(49):33398-33408. PubMed ID: 34926889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile Zn and Ni Co-Doped Hematite Nanorods for Efficient Photocatalytic Water Oxidation.
    Talibawo J; Kyesmen PI; Cyulinyana MC; Diale M
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of organic pollutants by Ag, Cu and Sn doped waste non-metallic printed circuit boards.
    Ramaswamy K; Radha V; Malathi M; Vithal M; Munirathnam NR
    Waste Manag; 2017 Feb; 60():629-635. PubMed ID: 27712944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the water splitting efficiency of Sn-doped hematite nanoflakes by flame annealing.
    Wang L; Lee CY; Mazare A; Lee K; Müller J; Spiecker E; Schmuki P
    Chemistry; 2014 Jan; 20(1):77-82. PubMed ID: 24338769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supercapacitor studies on NiO nanoflakes synthesized through a microwave route.
    Vijayakumar S; Nagamuthu S; Muralidharan G
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2188-96. PubMed ID: 23459412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green Synthesis, Characterization and Antimicrobial Activity of Copper Oxide Nanomaterial Derived from
    Qamar H; Rehman S; Chauhan DK; Tiwari AK; Upmanyu V
    Int J Nanomedicine; 2020; 15():2541-2553. PubMed ID: 32368039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anion-induced morphological regulation of cupric oxide nanostructures and their application as co-catalysts for solar water splitting.
    Vo TG; Chang SJ; Chiang CY
    Dalton Trans; 2020 Feb; 49(6):1765-1775. PubMed ID: 32016198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sol-gel deposited Cu2O and CuO thin films for photocatalytic water splitting.
    Lim YF; Chua CS; Lee CJ; Chi D
    Phys Chem Chem Phys; 2014 Dec; 16(47):25928-34. PubMed ID: 25355367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of in-situ Al
    Qian B; Liu C; Lu J; Jian M; Hu X; Zhou S; Hosseini T; Etschmann B; Zhang X; Wang H; Zhang L
    J Hazard Mater; 2020 Aug; 395():122696. PubMed ID: 32330778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic synthesis of CuO nanoflakes: A robust electrochemical scaffold for the sensitive detection of phenolic hazard in water and pharmaceutical samples.
    Hwa KY; Karuppaiah P; Gowthaman NSK; Balakumar V; Shankar S; Lim HN
    Ultrason Sonochem; 2019 Nov; 58():104649. PubMed ID: 31450344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of copper and lead from waste printed circuit boards by supercritical water oxidation combined with electrokinetic process.
    Xiu FR; Zhang FS
    J Hazard Mater; 2009 Jun; 165(1-3):1002-7. PubMed ID: 19056170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ZnO/CuO nanocomposites from recycled printed circuit board: preparation and photocatalytic properties.
    Nayak P; Kumar S; Sinha I; Singh KK
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):16279-16288. PubMed ID: 30980367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocrystal Engineering of Sputter-Grown CuO Photocathode for Visible-Light-Driven Electrochemical Water Splitting.
    Masudy-Panah S; Siavash Moakhar R; Chua CS; Tan HR; Wong TI; Chi D; Dalapati GK
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1206-13. PubMed ID: 26694248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of non-metallic parts of waste printed circuit boards on the properties of plasticised polyvinyl chloride recycled from the waste wire.
    Das RK; Gohatre OK; Biswal M; Mohanty S; Nayak SK
    Waste Manag Res; 2019 Jun; 37(6):569-577. PubMed ID: 30945618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating waste printed circuit boards recycling: Opportunities and challenges, a mini review.
    Awasthi AK; Zlamparet GI; Zeng X; Li J
    Waste Manag Res; 2017 Apr; 35(4):346-356. PubMed ID: 28097947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO(4) photoanodes.
    Parmar KP; Kang HJ; Bist A; Dua P; Jang JS; Lee JS
    ChemSusChem; 2012 Oct; 5(10):1926-34. PubMed ID: 22927058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.