BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 35842631)

  • 21. Metabolic engineering of Escherichia coli for production of (2S,3S)-butane-2,3-diol from glucose.
    Chu H; Xin B; Liu P; Wang Y; Li L; Liu X; Zhang X; Ma C; Xu P; Gao C
    Biotechnol Biofuels; 2015; 8():143. PubMed ID: 26379775
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Construction of cell factory capable of efficiently converting L-tryptophan into 5-hydroxytryptamine.
    Wang Y; Chen X; Chen Q; Zhou N; Wang X; Zhang A; Chen K; Ouyang P
    Microb Cell Fact; 2022 Mar; 21(1):47. PubMed ID: 35331215
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Molecular engineering and immobilization of lysine decarboxylase for synthesis of 1, 5-diaminopentane: a review].
    Liu S; Qi H
    Sheng Wu Gong Cheng Xue Bao; 2022 Dec; 38(12):4403-4419. PubMed ID: 36593185
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering a pyridoxal 5'-phosphate supply for cadaverine production by using Escherichia coli whole-cell biocatalysis.
    Ma W; Cao W; Zhang B; Chen K; Liu Q; Li Y; Ouyang P
    Sci Rep; 2015 Oct; 5():15630. PubMed ID: 26490441
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Process optimization for enhancing production of cis-4-hydroxy-L-proline by engineered Escherichia coli.
    Chen K; Pang Y; Zhang B; Feng J; Xu S; Wang X; Ouyang P
    Microb Cell Fact; 2017 Nov; 16(1):210. PubMed ID: 29166916
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic Engineering of
    Cen X; Liu Y; Chen B; Liu D; Chen Z
    ACS Synth Biol; 2021 Jan; 10(1):192-203. PubMed ID: 33301309
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Whole-cell biocatalyst for cadaverine production using stable, constitutive and high expression of lysine decarboxylase in recombinant Escherichia coli W3110.
    Ting WW; Huang CY; Wu PY; Huang SF; Lin HY; Li SF; Chang JS; Ng IS
    Enzyme Microb Technol; 2021 Aug; 148():109811. PubMed ID: 34116745
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of three glutamate decarboxylases from Bacillus spp. for efficient γ-aminobutyric acid production.
    Sun L; Bai Y; Zhang X; Zhou C; Zhang J; Su X; Luo H; Yao B; Wang Y; Tu T
    Microb Cell Fact; 2021 Aug; 20(1):153. PubMed ID: 34348699
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diastereoselective hydroxylation of 6-substituted piperidin-2-ones. An efficient synthesis of (2S,5R)-5-hydroxylysine and related alpha-amino acids.
    Marin J; Didierjean C; Aubry A; Briand JP; Guichard G
    J Org Chem; 2002 Nov; 67(24):8440-9. PubMed ID: 12444623
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Efficient biosynthesis of
    Pan S; Hu M; Pan X; Lyu Q; Zhu R; Zhang X; Rao Z
    Sheng Wu Gong Cheng Xue Bao; 2022 Jul; 38(7):2549-2565. PubMed ID: 35871624
    [No Abstract]   [Full Text] [Related]  

  • 31. Synthesis of an azido precursor to (2S,5R)-5-hydroxylysine using an asymmetric organocatalytic chlorination/reduction sequence.
    Johannes M; Brimble MA
    J Org Chem; 2013 Dec; 78(24):12809-13. PubMed ID: 24175670
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Full incorporation of the noncanonical amino acid hydroxylysine as a surrogate for lysine in green fluorescent protein.
    Finkler M; Ravanbodshirazi S; Grimm F; Hartz P; Ott A
    Bioorg Med Chem; 2021 Jul; 41():116207. PubMed ID: 34000506
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Studies on the formation of N6-hydroxylysine in cell-free extracts of Aerobacter aerogenes 62-1.
    Parniak MA; Jackson GE; Murray GJ; Viswanatha T
    Biochim Biophys Acta; 1979 Jul; 569(1):99-108. PubMed ID: 465510
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-Level Conversion of l-lysine into Cadaverine by
    Kim HT; Baritugo KA; Oh YH; Kang KH; Jung YJ; Jang S; Song BK; Kim IK; Lee MO; Hwang YT; Park K; Park SJ; Joo JC
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31337154
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multidimensional engineering of Escherichia coli for efficient biosynthesis of cis-3-hydroxypipecolic acid.
    Wang J; Wang Y; Wu Q; Zhang Y
    Bioresour Technol; 2023 Aug; 382():129173. PubMed ID: 37187331
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrating enzyme evolution and high-throughput screening for efficient biosynthesis of L-DOPA.
    Zeng W; Xu B; Du G; Chen J; Zhou J
    J Ind Microbiol Biotechnol; 2019 Dec; 46(12):1631-1641. PubMed ID: 31535250
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell foundry with high product specificity and catalytic activity for 21-deoxycortisol biotransformation.
    Xiong S; Wang Y; Yao M; Liu H; Zhou X; Xiao W; Yuan Y
    Microb Cell Fact; 2017 Jun; 16(1):105. PubMed ID: 28610588
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multienzymatic Cascade for Synthesis of Hydroxytyrosol via Two-Stage Biocatalysis.
    Liu WK; Su BM; Xu XQ; Xu L; Lin J
    J Agric Food Chem; 2024 Jun; ():. PubMed ID: 38940657
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineered P450 BM3 and cpADH5 coupled cascade reaction for β-oxo fatty acid methyl ester production in whole cells.
    Ensari Y; de Almeida Santos G; Ruff AJ; Schwaneberg U
    Enzyme Microb Technol; 2020 Aug; 138():109555. PubMed ID: 32527525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of Direct Lysine Decarboxylase Biotransformation for Cadaverine Production with Whole-Cell Biocatalysts at High Lysine Concentration.
    Kim HJ; Kim YH; Shin JH; Bhatia SK; Sathiyanarayanan G; Seo HM; Choi KY; Yang YH; Park K
    J Microbiol Biotechnol; 2015 Jul; 25(7):1108-13. PubMed ID: 25674800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.