These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 35842631)

  • 41. Effect of hydroxylysine on the biosynthesis of lysine in Streptococcus faecalis.
    Gilboe DP; Friede JD; Henderson LM
    J Bacteriol; 1968 Mar; 95(3):856-63. PubMed ID: 4966828
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolism of 5-hydroxylysine in Pseudomonas fluorescens.
    Friede JD; Henderson LM
    J Bacteriol; 1976 Sep; 127(3):1239-47. PubMed ID: 821924
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An assay for measuring the activity of Escherichia coli inducible lysine decarboxylase.
    Kanjee U; Houry WA
    J Vis Exp; 2010 Dec; (46):. PubMed ID: 21494223
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enzymatic production of trans-4-hydroxy-l-proline by proline 4-hydroxylase.
    Chen X; Yi J; Liu J; Luo Q; Liu L
    Microb Biotechnol; 2021 Mar; 14(2):479-487. PubMed ID: 32618422
    [TBL] [Abstract][Full Text] [Related]  

  • 45. One-Pot Biosynthesis of l-Aspartate from Maleate via an Engineered Strain Containing a Dual-Enzyme System.
    Liu Z; Yu L; Zhou L; Zhou Z
    Appl Environ Microbiol; 2019 Oct; 85(19):. PubMed ID: 31324629
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of new glutamate decarboxylases from
    Yuan H; Wang H; Fidan O; Qin Y; Xiao G; Zhan J
    J Biol Eng; 2019; 13():24. PubMed ID: 30949236
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional Study of Lysine Decarboxylases from Klebsiella pneumoniae in Escherichia coli and Application of Whole Cell Bioconversion for Cadaverine Production.
    Kim JH; Kim HJ; Kim YH; Jeon JM; Song HS; Kim J; No SY; Shin JH; Choi KY; Park KM; Yang YH
    J Microbiol Biotechnol; 2016 Sep; 26(9):1586-92. PubMed ID: 27291676
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydroxylation of lysine and glycosylation of hydroxylysine during collagen biosynthesis in isolated chick-embryo cartilage cells.
    Oikarinen A; Anttinen H; Kivirikko KI
    Biochem J; 1976 Jun; 156(3):545-51. PubMed ID: 949336
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficient production of trans-4-Hydroxy-l-proline from glucose by metabolic engineering of recombinant Escherichia coli.
    Zhang HL; Zhang C; Pei CH; Han MN; Xu ZD; Li CH; Li W
    Lett Appl Microbiol; 2018 May; 66(5):400-408. PubMed ID: 29432647
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transport of lysine and hydroxylysine in Streptococcus faecalis.
    Friede JD; Gilboe DP; Triebwasser KC; Henderson LM
    J Bacteriol; 1972 Jan; 109(1):179-85. PubMed ID: 4621625
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficient biosynthesis of cinnamyl alcohol by engineered Escherichia coli overexpressing carboxylic acid reductase in a biphasic system.
    Zhang C; Xu Q; Hou H; Wu J; Zheng Z; Ouyang J
    Microb Cell Fact; 2020 Aug; 19(1):163. PubMed ID: 32787860
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Direct evidence for the participation of pyruvate in N-hydroxylation of lysine.
    Szczepan EW; Kaller D; Honek JF; Viswanatha T
    FEBS Lett; 1987 Jan; 211(2):239-42. PubMed ID: 3100331
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Production of 17α-hydroxyprogesterone using an engineered biocatalyst with efficient electron transfer and improved 5-aminolevulinic acid synthesis coupled with a P450 hydroxylase.
    Li J; Gao J; Ai J; Yin Z; Lu F; Qin HM; Mao S
    Int J Biol Macromol; 2024 Jul; 273(Pt 1):132831. PubMed ID: 38825287
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chassis engineering of Escherichia coli for trans-4-hydroxy-l-proline production.
    Chen X; Yi J; Song W; Liu J; Luo Q; Liu L
    Microb Biotechnol; 2021 Mar; 14(2):392-402. PubMed ID: 32396278
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced productivity of gamma-amino butyric acid by cascade modifications of a whole-cell biocatalyst.
    Yang X; Ke C; Zhu J; Wang Y; Zeng W; Huang J
    Appl Microbiol Biotechnol; 2018 Apr; 102(8):3623-3633. PubMed ID: 29516142
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A CYP21A2 based whole-cell system in Escherichia coli for the biotechnological production of premedrol.
    Brixius-Anderko S; Schiffer L; Hannemann F; Janocha B; Bernhardt R
    Microb Cell Fact; 2015 Sep; 14():135. PubMed ID: 26374204
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metabolic engineering of Escherichia coli for efficient production of L-alanyl-L-glutamine.
    Zhu J; Yang W; Wang B; Liu Q; Zhong X; Gao Q; Liu J; Huang J; Lin B; Tao Y
    Microb Cell Fact; 2020 Jun; 19(1):129. PubMed ID: 32527330
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biocatalytic strategies for the asymmetric synthesis of alpha-hydroxy ketones.
    Hoyos P; Sinisterra JV; Molinari F; Alcántara AR; Domínguez de María P
    Acc Chem Res; 2010 Feb; 43(2):288-99. PubMed ID: 19908854
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ATP is not essential for cadaverine production by Escherichia coli whole-cell bioconversion.
    Song C; Li Y; Ma W
    J Biotechnol; 2022 Jul; 353():44-50. PubMed ID: 35660066
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A highly productive, whole-cell DERA chemoenzymatic process for production of key lactonized side-chain intermediates in statin synthesis.
    Ošlaj M; Cluzeau J; Orkić D; Kopitar G; Mrak P; Casar Z
    PLoS One; 2013; 8(5):e62250. PubMed ID: 23667462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.