BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 35842833)

  • 1. Deep learning in ultrasound elastography imaging: A review.
    Li H; Bhatt M; Qu Z; Zhang S; Hartel MC; Khademhosseini A; Cloutier G
    Med Phys; 2022 Sep; 49(9):5993-6018. PubMed ID: 35842833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning the implicit strain reconstruction in ultrasound elastography using privileged information.
    Gao Z; Wu S; Liu Z; Luo J; Zhang H; Gong M; Li S
    Med Image Anal; 2019 Dec; 58():101534. PubMed ID: 31352179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breast Tumour Classification Using Ultrasound Elastography with Machine Learning: A Systematic Scoping Review.
    Mao YJ; Lim HJ; Ni M; Yan WH; Wong DW; Cheung JC
    Cancers (Basel); 2022 Jan; 14(2):. PubMed ID: 35053531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.
    Piscaglia F; Salvatore V; Mulazzani L; Cantisani V; Schiavone C
    Ultraschall Med; 2016 Feb; 37(1):1-5. PubMed ID: 26871407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound Elastography: Review of Techniques and Clinical Applications.
    Sigrist RMS; Liau J; Kaffas AE; Chammas MC; Willmann JK
    Theranostics; 2017; 7(5):1303-1329. PubMed ID: 28435467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Displacement Estimation in Ultrasound Elastography Using Pyramidal Convolutional Neural Network.
    Tehrani AKZ; Rivaz H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2629-2639. PubMed ID: 32070949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Convolutional Neural Network-Based Speckle Tracking for Ultrasound Strain Elastography: An Unsupervised Learning Approach.
    Wen S; Peng B; Wei X; Luo J; Jiang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 May; 70(5):354-367. PubMed ID: 37022912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An unsupervised learning approach to ultrasound strain elastography with spatio-temporal consistency.
    Delaunay R; Hu Y; Vercauteren T
    Phys Med Biol; 2021 Sep; 66(17):. PubMed ID: 34298531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning hidden elasticity with deep neural networks.
    Chen CT; Gu GX
    Proc Natl Acad Sci U S A; 2021 Aug; 118(31):. PubMed ID: 34326258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Principles of ultrasound elastography.
    Ozturk A; Grajo JR; Dhyani M; Anthony BW; Samir AE
    Abdom Radiol (NY); 2018 Apr; 43(4):773-785. PubMed ID: 29487968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional shear-wave elastography on conventional ultrasound scanners with time-aligned sequential tracking (TAST) and comb-push ultrasound shear elastography (CUSE).
    Song P; Macdonald M; Behler R; Lanning J; Wang M; Urban M; Manduca A; Zhao H; Callstrom M; Alizad A; Greenleaf J; Chen S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Feb; 62(2):290-302. PubMed ID: 25643079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic Elastography Using B-Mode Ultrasound Through a Deep Fully Convolutional Neural Network.
    Wildeboer RR; van Sloun RJG; Mannaerts CK; Moraes PH; Salomon G; Chammas MC; Wijkstra H; Mischi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2640-2648. PubMed ID: 32217475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of a Deep Learning approach to estimate Shear Wave Speed using the framework of Reverberant Shear Wave Elastography: A numerical simulation study.
    Quispe P; Romero SE; Castaneda B
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3895-3898. PubMed ID: 36085802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 4D deep learning for real-time volumetric optical coherence elastography.
    Neidhardt M; Bengs M; Latus S; Schlüter M; Saathoff T; Schlaefer A
    Int J Comput Assist Radiol Surg; 2021 Jan; 16(1):23-27. PubMed ID: 32997312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural-network-based Motion Tracking for Breast Ultrasound Strain Elastography: An Initial Assessment of Performance and Feasibility.
    Peng B; Xian Y; Zhang Q; Jiang J
    Ultrason Imaging; 2020 Mar; 42(2):74-91. PubMed ID: 31997720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical characterization of quasi-static ultrasound elastography for the detection of deep tissue injuries.
    Hamaluik K; Moussa W; Ferguson-Pell M
    IEEE Trans Med Imaging; 2014 Jul; 33(7):1410-21. PubMed ID: 24691120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasound elastography: principles and techniques.
    Gennisson JL; Deffieux T; Fink M; Tanter M
    Diagn Interv Imaging; 2013 May; 94(5):487-95. PubMed ID: 23619292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bi-Directional Semi-Supervised Training of Convolutional Neural Networks for Ultrasound Elastography Displacement Estimation.
    Tehrani AKZ; Sharifzadeh M; Boctor E; Rivaz H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1181-1190. PubMed ID: 35085077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses: determination of the most discriminatory parameter.
    Au FW; Ghai S; Moshonov H; Kahn H; Brennan C; Dua H; Crystal P
    AJR Am J Roentgenol; 2014 Sep; 203(3):W328-36. PubMed ID: 25148191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear wave elastography of the testes in a healthy study collective - Differences in standard values between ARFI and VTIQ techniques.
    Marcon J; Trottmann M; Rübenthaler J; Stief CG; Reiser MF; Clevert DA
    Clin Hemorheol Microcirc; 2016; 64(4):721-728. PubMed ID: 27935546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.