BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35843015)

  • 1. Cardiac glycosides from the roots of Streblus asper Lour. with activity against Epstein-Barr virus lytic replication.
    Cai J; Zhang BD; Li YQ; Zhu WF; Akihisa T; Kikuchi T; Xu J; Liu WY; Feng F; Zhang J
    Bioorg Chem; 2022 Oct; 127():106004. PubMed ID: 35843015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization, quantitation, similarity evaluation and combination with Na
    Bai Y; Zhu W; Xu Y; Xie Z; Akihisa T; Manosroi J; Sun H; Feng F; Liu W; Zhang J
    Bioorg Chem; 2019 Jun; 87():265-275. PubMed ID: 30908969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytotoxic and non-cytotoxic cardiac glycosides isolated from the combined flowers, leaves, and twigs of Streblus asper.
    Ren Y; Tan Q; Heath K; Wu S; Wilson JR; Ren J; Shriwas P; Yuan C; Ngoc Ninh T; Chai HB; Chen X; Soejarto DD; Johnson ME; Cheng X; Burdette JE; Kinghorn AD
    Bioorg Med Chem; 2020 Feb; 28(4):115301. PubMed ID: 31953129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiac glycosides from Streblus asper with potential antiviral activity.
    Ouyang Q; He YX; Zhang YL; You JQ; Yu MH; Lei C; Hou AJ
    Phytochemistry; 2024 Mar; 219():113990. PubMed ID: 38219854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytotoxic cardiac glycosides from the root of Streblus asper.
    Osman Mohammed RM; Huang Y; Guan X; Huang X; Deng S; Yang R; Li J; Li J
    Phytochemistry; 2022 Aug; 200():113239. PubMed ID: 35623471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac Glycoside Constituents of Streblus asper with Potential Antineoplastic Activity.
    Ren Y; Chen WL; Lantvit DD; Sass EJ; Shriwas P; Ninh TN; Chai HB; Zhang X; Soejarto DD; Chen X; Lucas DM; Swanson SM; Burdette JE; Kinghorn AD
    J Nat Prod; 2017 Mar; 80(3):648-658. PubMed ID: 27983842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiac glycosides from the roots of Streblus asper Lour. and their apoptosis-inducing activities in A549 cells.
    Zhang BD; Zhu WF; Akihisa T; Kikuchi T; Ukiya M; Maya F; Xu J; Liu WY; Feng F; Zhang J
    Phytochemistry; 2021 Jan; 181():112544. PubMed ID: 33130375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three new cardiac glycosides obtained from the roots of
    Miao D; Zhang T; Xu J; Ma C; Liu W; Kikuchi T; Akihisa T; Abe M; Feng F; Zhang J
    RSC Adv; 2018 May; 8(35):19570-19579. PubMed ID: 35540977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Mechanism-Based Targeted Screen To Identify Epstein-Barr Virus-Directed Antiviral Agents.
    Li X; Akinyemi IA; You JK; Rezaei MA; Li C; McIntosh MT; Del Poeta M; Bhaduri-McIntosh S
    J Virol; 2020 Oct; 94(21):. PubMed ID: 32796077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular RNA Helicase DHX9 Interacts with the Essential Epstein-Barr Virus (EBV) Protein SM and Restricts EBV Lytic Replication.
    Fu W; Verma D; Burton A; Swaminathan S
    J Virol; 2019 Feb; 93(4):. PubMed ID: 30541834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of JAK-STAT Signaling by Epstein-Barr Virus Tegument Protein BGLF2 through Recruitment of SHP1 Phosphatase and Promotion of STAT2 Degradation.
    Jangra S; Bharti A; Lui WY; Chaudhary V; Botelho MG; Yuen KS; Jin DY
    J Virol; 2021 Sep; 95(20):e0102721. PubMed ID: 34319780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential antiviral lignans from the roots of Saururus chinensis with activity against Epstein-Barr virus lytic replication.
    Cui H; Xu B; Wu T; Xu J; Yuan Y; Gu Q
    J Nat Prod; 2014 Jan; 77(1):100-10. PubMed ID: 24359277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BZLF1 controlled by family repeat domain induces lytic cytotoxicity in Epstein-Barr virus-positive tumor cells.
    Wang H; Zhao Y; Zeng L; Tang M; El-Deeb A; Li JJ; Cao Y
    Anticancer Res; 2004; 24(1):67-74. PubMed ID: 15015577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Translation of Epstein-Barr Virus (EBV) DNA Polymerase Contributes to the Enhanced Lytic Replication Phenotype of M81 EBV.
    Church TM; Verma D; Thompson J; Swaminathan S
    J Virol; 2018 Mar; 92(6):. PubMed ID: 29263273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of Epstein-Barr virus reactivation in nasopharyngeal carcinoma cells by dietary sulforaphane.
    Wu CC; Chuang HY; Lin CY; Chen YJ; Tsai WH; Fang CY; Huang SY; Chuang FY; Lin SF; Chang Y; Chen JY
    Mol Carcinog; 2013 Dec; 52(12):946-58. PubMed ID: 22641235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory effects of some derivatives of glycyrrhizic acid against Epstein-Barr virus infection: structure-activity relationships.
    Lin JC; Cherng JM; Hung MS; Baltina LA; Baltina L; Kondratenko R
    Antiviral Res; 2008 Jul; 79(1):6-11. PubMed ID: 18423902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Antiviral Effects of Na,K-ATPase Inhibition: A Minireview.
    Amarelle L; Lecuona E
    Int J Mol Sci; 2018 Jul; 19(8):. PubMed ID: 30042322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neo-clerodane diterpenoids from Scutellaria barbata with activity against Epstein-Barr virus lytic replication.
    Wu T; Wang Q; Jiang C; Morris-Natschke SL; Cui H; Wang Y; Yan Y; Xu J; Lee KH; Gu Q
    J Nat Prod; 2015 Mar; 78(3):500-9. PubMed ID: 25647077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dipyridamole as a new drug to prevent Epstein-Barr virus reactivation.
    Thomé MP; Borde C; Larsen AK; Henriques JAP; Lenz G; Escargueil AE; Maréchal V
    Antiviral Res; 2019 Dec; 172():104615. PubMed ID: 31580916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Basis for Cooperative Binding of EBNA1 to the Epstein-Barr Virus Dyad Symmetry Minimal Origin of Replication.
    Malecka KA; Dheekollu J; Deakyne JS; Wiedmer A; Ramirez UD; Lieberman PM; Messick TE
    J Virol; 2019 Oct; 93(20):. PubMed ID: 31142669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.