These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35843116)

  • 1. Theoretical insights into the electroreduction of nitrate to ammonia on graphene-based single-atom catalysts.
    Wang Y; Wu D; Lv P; He B; Li X; Ma D; Jia Y
    Nanoscale; 2022 Aug; 14(30):10862-10872. PubMed ID: 35843116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Similar electronic state effect enables excellent activity for nitrate-to-ammonia electroreduction on both high- and low-density double-atom catalysts.
    Lv W; Deng J; Wu D; He B; Tang G; Ma D; Jia Y; Lv P
    J Chem Phys; 2023 Oct; 159(16):. PubMed ID: 37873963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene-based iron single-atom catalysts for electrocatalytic nitric oxide reduction: a first-principles study.
    Li H; Wu D; Wu J; Lv W; Duan Z; Ma D
    Nanoscale; 2024 Apr; 16(14):7058-7067. PubMed ID: 38445992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Atom Low-Valent Alkaline-Earth-Metal Catalysts for Electrochemical Nitrogen Reduction with an Acceptance-Backdonation Mechanism.
    Wen Z; Lv H; Wu X
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):52079-52086. PubMed ID: 36356233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational Design of Graphene-Supported Single-Atom Catalysts for Electroreduction of Nitrogen.
    Yan M; Jasin Arachchige L; Dong A; Zhang XL; Dai Z; Sun C
    Inorg Chem; 2021 Dec; 60(23):18314-18324. PubMed ID: 34787407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser-Induced Pd-PdO/rGO Catalysts for Enhanced Electrocatalytic Conversion of Nitrate into Ammonia.
    Ebenezer J; Lal A; Velayudham P; Borenstein A; Schechter A
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 38961637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulating the Electronic Structure of Cobalt in Molecular Catalysts via Coordination Environment Regulation for Highly Efficient Heterogeneous Nitrate Reduction.
    Sun L; Dai C; Wang T; Jin X; Xu ZJ; Wang X
    Angew Chem Int Ed Engl; 2024 Apr; 63(15):e202320027. PubMed ID: 38317616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular nitrogen induced structural evolution of single transition metal atoms supported by B/N co-doped graphene for enhanced nitrogen electroreduction performance.
    Bai Z; Wang J; Peng X; Liu Y; Zhang W
    Phys Chem Chem Phys; 2023 Oct; 25(40):27075-27082. PubMed ID: 37801005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ce-doped copper oxide and copper vanadate Cu
    Zhang M; Liu Y; Duan Y; Liu X; Wang YQ
    J Colloid Interface Sci; 2024 Oct; 671():258-269. PubMed ID: 38810340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfur-Coordinated Transition Metal Atom in Graphene for Electrocatalytic Nitrogen Reduction with an Electronic Descriptor.
    Wen Z; Lv H; Wu D; Zhang W; Wu X; Yang J
    J Phys Chem Lett; 2022 Sep; 13(34):8177-8184. PubMed ID: 36005734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening of transition metal single-atom catalysts supported by a WS
    Li R; Guo W
    Phys Chem Chem Phys; 2022 Jun; 24(21):13384-13398. PubMed ID: 35608279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition Metal Single-Atom Catalysts for the Electrocatalytic Nitrate Reduction: Mechanism, Synthesis, Characterization, Application, and Prospects.
    Xiang T; Liang Y; Zeng Y; Deng J; Yuan J; Xiong W; Song B; Zhou C; Yang Y
    Small; 2023 Oct; 19(41):e2303732. PubMed ID: 37300329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Periodic Defect Engineering of Iron-Nitrogen-Carbon Catalysts for Nitrate Electroreduction to Ammonia.
    Zhu R; Qin Y; Wu T; Ding S; Su Y
    Small; 2024 Feb; 20(8):e2307315. PubMed ID: 37828238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atom-Pair Catalysts Supported by N-Doped Graphene for the Nitrogen Reduction Reaction:
    Deng T; Cen C; Shen H; Wang S; Guo J; Cai S; Deng M
    J Phys Chem Lett; 2020 Aug; 11(15):6320-6329. PubMed ID: 32660249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cu/NiO nanorods for efficiently promoting the electrochemical nitrate reduction to ammonia.
    Liu X; Duan Y; Cheng XT; Zhao HL; Liu Z; Wang YQ
    Dalton Trans; 2023 Nov; 52(46):17470-17476. PubMed ID: 37953713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing the pH-dependent mechanism of nitrate electrochemical reduction to ammonia on single-atom catalysts.
    Yan J; Xu H; Chang L; Lin A; Cheng D
    Nanoscale; 2022 Oct; 14(41):15422-15431. PubMed ID: 36218353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Atom Catalysis toward Efficient CO
    Su X; Yang XF; Huang Y; Liu B; Zhang T
    Acc Chem Res; 2019 Mar; 52(3):656-664. PubMed ID: 30512920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uniting Synergistic Effect of Single-Ni Site and Electric Field of B- Bridged-N for Boosted Electrocatalytic Nitrate Reduction to Ammonia.
    Ajmal S; Kumar A; Mushtaq MA; Tabish M; Zhao Y; Zhang W; Khan AS; Saad A; Yasin G; Zhao W
    Small; 2024 Mar; ():e2310082. PubMed ID: 38470193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulating the coordination environment of single atom catalysts anchored on C
    Xia J; Cao R; Xu W; Wu Q
    J Colloid Interface Sci; 2024 Mar; 658():795-804. PubMed ID: 38154242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordination environment engineering on nickel single-atom catalysts for CO
    Ma M; Li F; Tang Q
    Nanoscale; 2021 Nov; 13(45):19133-19143. PubMed ID: 34779473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.