These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35843264)

  • 1. The Peripheral Lymphatic System Is Impaired by the Loss of Neuronal Control Associated with Chronic Spinal Cord Injury.
    Brunner G; Roux MS; Falk T; Bresch M; Böhm V; Blödorn-Schlicht N; Meiners T
    Am J Pathol; 2022 Oct; 192(10):1448-1457. PubMed ID: 35843264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular and molecular changes that predispose skin in chronic spinal cord injury to pressure ulcer formation.
    Brunner G; Roux M; Böhm V; Meiners T
    Int Wound J; 2021 Oct; 18(5):728-737. PubMed ID: 33723924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mucocele: a human model for lymphangiogenesis.
    Castro EC; Galambos C
    Pediatr Dev Pathol; 2009; 12(3):222-8. PubMed ID: 18937525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lymphangiogenesis Facilitates Initial Lymph Formation and Enhances the Dendritic Cell Mobilizing Chemokine CCL21 Without Affecting Migration.
    Karlsen TV; Reikvam T; Tofteberg A; Nikpey E; Skogstrand T; Wagner M; Tenstad O; Wiig H
    Arterioscler Thromb Vasc Biol; 2017 Nov; 37(11):2128-2135. PubMed ID: 28935759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of VEGFR-3 and 5'-nase in regenerating lymphatic vessels of the cutaneous wound healing.
    Ji RC; Miura M; Qu P; Kato S
    Microsc Res Tech; 2004 Jun; 64(3):279-86. PubMed ID: 15452895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New insights into the biology and pathology of the cutaneous lymphatic system.
    Hirakawa S; Detmar M
    J Dermatol Sci; 2004 Jun; 35(1):1-8. PubMed ID: 15194141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing.
    Maruyama K; Asai J; Ii M; Thorne T; Losordo DW; D'Amore PA
    Am J Pathol; 2007 Apr; 170(4):1178-91. PubMed ID: 17392158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maldevelopment of dermal lymphatics in Wnt5a-knockout-mice.
    Buttler K; Becker J; Pukrop T; Wilting J
    Dev Biol; 2013 Sep; 381(2):365-76. PubMed ID: 23850867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological changes of dermal blood and lymphatic vessels in chronic venous insufficiency of the leg.
    Scelsi R; Scelsi L; Cortinovis R; Poggi P
    Int Angiol; 1994 Dec; 13(4):308-11. PubMed ID: 7790750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential cavitation, angiogenesis and wound-healing responses in injured mouse and rat spinal cords.
    Surey S; Berry M; Logan A; Bicknell R; Ahmed Z
    Neuroscience; 2014 Sep; 275():62-80. PubMed ID: 24929066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of lymphangiogenesis in a model of adult skin regeneration.
    Rutkowski JM; Boardman KC; Swartz MA
    Am J Physiol Heart Circ Physiol; 2006 Sep; 291(3):H1402-10. PubMed ID: 16648194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long noncoding RNA-antisense noncoding RNA in the INK4 locus accelerates wound healing in diabetes by promoting lymphangiogenesis via regulating miR-181a/Prox1 axis.
    He ZY; Wei TH; Zhang PH; Zhou J; Huang XY
    J Cell Physiol; 2019 Apr; 234(4):4627-4640. PubMed ID: 30565672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lymphangiogenesis in the bone-implant interface of orthopedic implants: importance and consequence.
    Jell G; Kerjaschki D; Revell P; Al-Saffar N
    J Biomed Mater Res A; 2006 Apr; 77(1):119-27. PubMed ID: 16392126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal Cord Injury Suppresses Cutaneous Inflammation: Implications for Peripheral Wound Healing.
    Marbourg JM; Bratasz A; Mo X; Popovich PG
    J Neurotrauma; 2017 Mar; 34(6):1149-1155. PubMed ID: 27650169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vascular dysfunctions following spinal cord injury.
    Popa C; Popa F; Grigorean VT; Onose G; Sandu AM; Popescu M; Burnei G; Strambu V; Sinescu C
    J Med Life; 2010; 3(3):275-85. PubMed ID: 20945818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury.
    Yamaya S; Ozawa H; Kanno H; Kishimoto KN; Sekiguchi A; Tateda S; Yahata K; Ito K; Shimokawa H; Itoi E
    J Neurosurg; 2014 Dec; 121(6):1514-25. PubMed ID: 25280090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of human immunoglobulin G on enhancing tissue protection and neurobehavioral recovery after traumatic cervical spinal cord injury are mediated through the neurovascular unit.
    Chio JCT; Wang J; Badner A; Hong J; Surendran V; Fehlings MG
    J Neuroinflammation; 2019 Jul; 16(1):141. PubMed ID: 31288834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of retinoid levels by CYP26B1 is important for lymphatic vascular development in the mouse embryo.
    Bowles J; Secker G; Nguyen C; Kazenwadel J; Truong V; Frampton E; Curtis C; Skoczylas R; Davidson TL; Miura N; Hong YK; Koopman P; Harvey NL; François M
    Dev Biol; 2014 Feb; 386(1):25-33. PubMed ID: 24361262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Complete Spinal Cord Injury on Healing of Skin Ulcers in Mouse Models.
    Kumar S; Yarmush ML; Dash BC; Hsia HC; Berthiaume F
    J Neurotrauma; 2018 Mar; 35(6):815-824. PubMed ID: 29160147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corneal lymphangiogenesis: implications in immunity.
    Patel SP; Dana R
    Semin Ophthalmol; 2009; 24(3):135-8. PubMed ID: 19437348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.