These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 35843274)
1. A comprehensive carbon footprint analysis of different wastewater treatment plant configurations. Wu Z; Duan H; Li K; Ye L Environ Res; 2022 Nov; 214(Pt 2):113818. PubMed ID: 35843274 [TBL] [Abstract][Full Text] [Related]
2. Thermophilic biological fluidized bed reactor in sludge line reduces greenhouse gas emissions in wastewater treatment system. Collivignarelli MC; Baldi M; Carnevale Miino M Sci Total Environ; 2022 Nov; 848():157794. PubMed ID: 35932854 [TBL] [Abstract][Full Text] [Related]
3. A holistic approach for performance evaluation of wastewater treatment plants: integrating grey water footprint and life cycle impact assessment. Jamshidi S; Farsimadan M; Mohammadi H Water Sci Technol; 2024 Apr; 89(7):1741-1756. PubMed ID: 38619900 [TBL] [Abstract][Full Text] [Related]
4. Systematical analysis of sludge treatment and disposal technologies for carbon footprint reduction. Zhao Y; Yang Z; Niu J; Du Z; Federica C; Zhu Z; Yang K; Li Y; Zhao B; Pedersen TH; Liu C; Emmanuel M J Environ Sci (China); 2023 Jun; 128():224-249. PubMed ID: 36801037 [TBL] [Abstract][Full Text] [Related]
5. Evaluating the effect of different operational strategies on the carbon footprint of wastewater treatment plants - case studies from northern Poland. Maktabifard M; Zaborowska E; Makinia J Water Sci Technol; 2019 Jun; 79(11):2211-2220. PubMed ID: 31318359 [TBL] [Abstract][Full Text] [Related]
6. Reduction of sewage sludge and N Mannina G; Cosenza A; Di Trapani D; Gulhan H; Mineo A; Bosco Mofatto PM Sci Total Environ; 2024 Jan; 906():167793. PubMed ID: 37838037 [TBL] [Abstract][Full Text] [Related]
7. Carbon footprint analysis of wastewater treatment processes coupled with sludge in situ reduction. Sun Y; Zuo Y; Shao Y; Wang L; Jiang LM; Hu J; Zhou C; Lu X; Huang S; Zhou Z Water Res X; 2024 Sep; 24():100243. PubMed ID: 39188329 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive evaluation of the carbon footprint components of wastewater treatment plants located in the Baltic Sea region. Maktabifard M; Awaitey A; Merta E; Haimi H; Zaborowska E; Mikola A; Mąkinia J Sci Total Environ; 2022 Feb; 806(Pt 1):150436. PubMed ID: 34563900 [TBL] [Abstract][Full Text] [Related]
9. Sludge degradation, nutrient removal and reduction of greenhouse gas emission by a Chironomus-Azolla wastewater treatment cascade. Hendriks L; van der Meer TV; Kraak MHS; Verdonschot PFM; Smolders AJP; Lamers LPM; Veraart AJ PLoS One; 2024; 19(5):e0301459. PubMed ID: 38805505 [TBL] [Abstract][Full Text] [Related]
10. Identifying energy and carbon footprint optimization potentials of a sludge treatment line with Life Cycle Assessment. Remy C; Lesjean B; Waschnewski J Water Sci Technol; 2013; 67(1):63-73. PubMed ID: 23128622 [TBL] [Abstract][Full Text] [Related]
11. Carbon footprint analysis and carbon neutrality potential of desalination by electrodialysis for different applications. Xue N; Lu J; Gu D; Lou Y; Yuan Y; Li G; Kumagai S; Saito Y; Yoshioka T; Zhang N Water Res; 2023 Apr; 232():119716. PubMed ID: 36796153 [TBL] [Abstract][Full Text] [Related]
12. Assessment and optimization of wastewater treatment plant in terms of effluent quality, energy footprint, and greenhouse gas emissions: An integrated modeling approach. Lee S; Choi J; Choi H; Oh H; Lee S Ecotoxicol Environ Saf; 2024 Sep; 283():116820. PubMed ID: 39094454 [TBL] [Abstract][Full Text] [Related]
13. Wastewater treatment process impact on energy savings and greenhouse gas emissions. Mamais D; Noutsopoulos C; Dimopoulou A; Stasinakis A; Lekkas TD Water Sci Technol; 2015; 71(2):303-8. PubMed ID: 25633956 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of greenhouse gas emissions from aerobic and anaerobic wastewater treatment plants in Southeast of Italy. Ranieri E; D'Onghia G; Lopopolo L; Gikas P; Ranieri F; Gika E; Spagnolo V; Ranieri AC J Environ Manage; 2023 Jul; 337():117767. PubMed ID: 36965371 [TBL] [Abstract][Full Text] [Related]
15. Automatic control and optimal operation for greenhouse gas mitigation in sustainable wastewater treatment plants: A review. Lu H; Wang H; Wu Q; Luo H; Zhao Q; Liu B; Si Q; Zheng S; Guo W; Ren N Sci Total Environ; 2023 Jan; 855():158849. PubMed ID: 36122730 [TBL] [Abstract][Full Text] [Related]
16. The evaluation of GHG emissions from Shanghai municipal wastewater treatment plants based on IPCC and operational data integrated methods (ODIM). Xi J; Gong H; Zhang Y; Dai X; Chen L Sci Total Environ; 2021 Nov; 797():148967. PubMed ID: 34298368 [TBL] [Abstract][Full Text] [Related]
17. Toward better understanding and feasibility of controlling greenhouse gas emissions from treatment of industrial wastewater with activated sludge. Chen WH; Yang JH; Yuan CS; Yang YH Environ Sci Pollut Res Int; 2016 Oct; 23(20):20449-20461. PubMed ID: 27460025 [TBL] [Abstract][Full Text] [Related]
18. Carbon footprints of Scandinavian wastewater treatment plants. Gustavsson DJ; Tumlin S Water Sci Technol; 2013; 68(4):887-93. PubMed ID: 23985520 [TBL] [Abstract][Full Text] [Related]
19. Modelling greenhouse gas emissions from biological wastewater treatment by GPS-X: The full-scale case study of Corleone (Italy). Gulhan H; Cosenza A; Mannina G Sci Total Environ; 2023 Dec; 905():167327. PubMed ID: 37748617 [TBL] [Abstract][Full Text] [Related]
20. Options to reduce greenhouse gas emissions during wastewater treatment for agricultural use. Fine P; Hadas E Sci Total Environ; 2012 Feb; 416():289-99. PubMed ID: 22209373 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]