These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35843288)

  • 1. Chromatically simulated myopic blur counteracts a myopiagenic environment.
    Gawne TJ; She Z; Norton TT
    Exp Eye Res; 2022 Sep; 222():109187. PubMed ID: 35843288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Parameters Governing the Anti-Myopia Efficacy of Chromatically Simulated Myopic Defocus in Tree Shrews.
    She Z; Gawne TJ
    Transl Vis Sci Technol; 2024 May; 13(5):6. PubMed ID: 38722277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effectiveness of hyperopic defocus, minimal defocus, or myopic defocus in competition with a myopiagenic stimulus in tree shrew eyes.
    Norton TT; Siegwart JT; Amedo AO
    Invest Ophthalmol Vis Sci; 2006 Nov; 47(11):4687-99. PubMed ID: 17065475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The wavelength composition and temporal modulation of ambient lighting strongly affect refractive development in young tree shrews.
    Gawne TJ; Siegwart JT; Ward AH; Norton TT
    Exp Eye Res; 2017 Feb; 155():75-84. PubMed ID: 27979713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of ambient narrowband long-wavelength light on lens-induced myopia and form-deprivation myopia in tree shrews.
    She Z; Ward AH; Gawne TJ
    Exp Eye Res; 2023 Sep; 234():109593. PubMed ID: 37482282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tree shrews do not maintain emmetropia in initially-focused narrow-band cyan light.
    Norton TT; Khanal S; Gawne TJ
    Exp Eye Res; 2021 May; 206():108525. PubMed ID: 33711339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Juvenile Tree Shrews Do Not Maintain Emmetropia in Narrow-band Blue Light.
    Gawne TJ; Ward AH; Norton TT
    Optom Vis Sci; 2018 Oct; 95(10):911-920. PubMed ID: 30179995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binocular lens treatment in tree shrews: Effect of age and comparison of plus lens wear with recovery from minus lens-induced myopia.
    Siegwart JT; Norton TT
    Exp Eye Res; 2010 Nov; 91(5):660-9. PubMed ID: 20713041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limited bandwidth short-wavelength light produces slowly-developing myopia in tree shrews similar to human juvenile-onset myopia.
    Khanal S; Norton TT; Gawne TJ
    Vision Res; 2023 Mar; 204():108161. PubMed ID: 36529048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amber light treatment produces hyperopia in tree shrews.
    Khanal S; Norton TT; Gawne TJ
    Ophthalmic Physiol Opt; 2021 Sep; 41(5):1076-1086. PubMed ID: 34382245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual guidance of recovery from lens-induced myopia in tree shrews (Tupaia glis belangeri).
    Amedo AO; Norton TT
    Ophthalmic Physiol Opt; 2012 Mar; 32(2):89-99. PubMed ID: 22035177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Darkness causes myopia in visually experienced tree shrews.
    Norton TT; Amedo AO; Siegwart JT
    Invest Ophthalmol Vis Sci; 2006 Nov; 47(11):4700-7. PubMed ID: 17065476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-wavelength (red) light produces hyperopia in juvenile and adolescent tree shrews.
    Gawne TJ; Ward AH; Norton TT
    Vision Res; 2017 Nov; 140():55-65. PubMed ID: 28801261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An opponent dual-detector spectral drive model of emmetropization.
    Gawne TJ; Norton TT
    Vision Res; 2020 Aug; 173():7-20. PubMed ID: 32445984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eyes in various species can shorten to compensate for myopic defocus.
    Zhu X; McBrien NA; Smith EL; Troilo D; Wallman J
    Invest Ophthalmol Vis Sci; 2013 Apr; 54(4):2634-44. PubMed ID: 23493295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Narrow-band, long-wavelength lighting promotes hyperopia and retards vision-induced myopia in infant rhesus monkeys.
    Hung LF; Arumugam B; She Z; Ostrin L; Smith EL
    Exp Eye Res; 2018 Nov; 176():147-160. PubMed ID: 29981345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refractive plasticity of the developing chick eye: a summary and update.
    Irving EL; Sivak JG; Callender MG
    Ophthalmic Physiol Opt; 2015 Nov; 35(6):600-6. PubMed ID: 26497292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response to interrupted hyperopia after restraint of axial elongation in tree shrews.
    Siegwart JT; Norton TT
    Optom Vis Sci; 2013 Feb; 90(2):131-9. PubMed ID: 23314128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression signatures in tree shrew sclera in response to three myopiagenic conditions.
    Guo L; Frost MR; He L; Siegwart JT; Norton TT
    Invest Ophthalmol Vis Sci; 2013 Oct; 54(10):6806-19. PubMed ID: 24045991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulus requirements for the decoding of myopic and hyperopic defocus under single and competing defocus conditions in the chicken.
    Diether S; Wildsoet CF
    Invest Ophthalmol Vis Sci; 2005 Jul; 46(7):2242-52. PubMed ID: 15980207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.