These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35843317)

  • 1. The influence of climate change and variability on the IFD Curves in NSW, Australia.
    Hajani E
    Sci Total Environ; 2022 Nov; 845():157359. PubMed ID: 35843317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of future nationwide forest transition to discharge in the 21st century with regard to general circulation model climate change scenarios.
    Mouri G; Nakano K; Tsuyama I; Tanaka N
    Environ Res; 2016 Aug; 149():288-296. PubMed ID: 26852164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impacts of rainfall variability and expected rainfall changes on cost-effective adaptation of water systems to climate change.
    van der Pol TD; van Ierland EC; Gabbert S; Weikard HP; Hendrix EM
    J Environ Manage; 2015 May; 154():40-7. PubMed ID: 25704748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A downscaling-disaggregation approach for developing IDF curves in arid regions.
    Uraba MB; Gunawardhana LN; Al-Rawas GA; Baawain MS
    Environ Monit Assess; 2019 Mar; 191(4):245. PubMed ID: 30915584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of climate change on IDF curves for urban stormwater management systems design: the case of Dodola Town, Ethiopia.
    Bibi TS; Tekesa NW
    Environ Monit Assess; 2022 Dec; 195(1):170. PubMed ID: 36459269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-decadal climate variability, New South Wales, Australia.
    Franks SW
    Water Sci Technol; 2004; 49(7):133-40. PubMed ID: 15195429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of large-scale afforestation and climate change on water allocation in the Macquarie River catchment, NSW, Australia.
    Herron N; Davis R; Jones R
    J Environ Manage; 2002 Aug; 65(4):369-81. PubMed ID: 12369401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Living with uncertainty: climate change, river flows and water resource management in Scotland.
    Werritty A
    Sci Total Environ; 2002 Jul; 294(1-3):29-40. PubMed ID: 12169009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A framework for quantifying climate-informed heavy rainfall change: Implications for adaptation strategies.
    Zhao W; Abhishek ; Kinouchi T; Ang R; Zhuang Q
    Sci Total Environ; 2022 Aug; 835():155553. PubMed ID: 35489487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of effects of climate change on runoff in an urban drainage system: a case study from Seoul, Korea.
    Jung M; Kim H; Mallari KJ; Pak G; Yoon J
    Water Sci Technol; 2015; 71(5):653-60. PubMed ID: 25768210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a non-stationary Standardized Precipitation Index and its application to a South Australian climate.
    Rashid MM; Beecham S
    Sci Total Environ; 2019 Mar; 657():882-892. PubMed ID: 30677953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multivariate framework for the assessment of key forcing to Lake Malawi level variations in non-stationary frequency analysis.
    Ngongondo C; Zhou Y; Xu CY
    Environ Monit Assess; 2020 Aug; 192(9):593. PubMed ID: 32821968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate change-induced variations in future extreme precipitation intensity-duration-frequency in flood-prone city of Adama, central Ethiopia.
    Bulti DT; Abebe BG; Biru Z
    Environ Monit Assess; 2021 Nov; 193(12):784. PubMed ID: 34755254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of future variability in extreme precipitation and the potential effects on the wadi flow regime.
    Gunawardhana LN; Al-Rawas GA; Kazama S; Al-Najar KA
    Environ Monit Assess; 2015 Oct; 187(10):626. PubMed ID: 26370197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of a model with climatic and flow scenario analysis: case of Lake Burrumbeet in southeastern Australia.
    Yihdego Y; Webb J
    Environ Monit Assess; 2016 May; 188(5):308. PubMed ID: 27108121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-century tree-ring precipitation record reveals increasing frequency of extreme dry events in the upper Blue Nile River catchment.
    Mokria M; Gebrekirstos A; Abiyu A; Van Noordwijk M; Bräuning A
    Glob Chang Biol; 2017 Dec; 23(12):5436-5454. PubMed ID: 28712116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intensity-Duration-Frequency (IDF) rainfall curves, for data series and climate projection in African cities.
    De Paola F; Giugni M; Topa ME; Bucchignani E
    Springerplus; 2014; 3():133. PubMed ID: 25674436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of human activities and climate variability on water resources in the Saveh plain, Iran.
    Mohammadi Ghaleni M; Ebrahimi K
    Environ Monit Assess; 2015 Feb; 187(2):35. PubMed ID: 25632898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of changes in return levels of historical and projected high and low flows of upper Euphrates basin in Turkey using nonstationary models.
    Aziz R; Yucel I
    Environ Monit Assess; 2023 Apr; 195(5):576. PubMed ID: 37060374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate Change, Drought and Rural Suicide in New South Wales, Australia: Future Impact Scenario Projections to 2099.
    Hanigan IC; Chaston TB
    Int J Environ Res Public Health; 2022 Jun; 19(13):. PubMed ID: 35805514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.