BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35843337)

  • 1. CO
    Gil-Lalaguna N; Navarro-Gil Á; Carstensen HH; Ruiz J; Fonts I; Ceamanos J; Murillo MB; Gea G
    Sci Total Environ; 2022 Nov; 846():157395. PubMed ID: 35843337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the use of plastic precursors for preparation of activated carbons and their evaluation in CO
    Pérez-Huertas S; Calero M; Ligero A; Pérez A; Terpiłowski K; Martín-Lara MA
    Waste Manag; 2023 Apr; 161():116-141. PubMed ID: 36878040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promoting the circular economy: Valorization of a residue from industrial char to activated carbon with potential environmental applications as adsorbents.
    Pereira L; Castillo V; Calero M; González-Egido S; Martín-Lara MÁ; Solís RR
    J Environ Manage; 2024 Apr; 356():120753. PubMed ID: 38531130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing a sorptive material of cadmium from pyrolysis of hen manure.
    Lee JI; Choi D; Kim S; Kim JY; Park SJ; Kwon EE
    Chemosphere; 2024 Mar; 351():141262. PubMed ID: 38262492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upgrading recovered carbon black (rCB) from industrial-scale end-of-life tires (ELTs) pyrolysis to activated carbons: Material characterization and CO
    Dziejarski B; Hernández-Barreto DF; Moreno-Piraján JC; Giraldo L; Serafin J; Knutsson P; Andersson K; Krzyżyńska R
    Environ Res; 2024 Apr; 247():118169. PubMed ID: 38244973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-energy and chemical-free activation of pyrolytic tire char and its adsorption characteristics.
    Quek A; Balasubramanian R
    J Air Waste Manag Assoc; 2009 Jun; 59(6):747-56. PubMed ID: 19603742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wastewater post-coagulation sludge recycled as a multifunctional adsorbent via pyrolysis enhanced in carbon dioxide (CO
    Wang M; Liu G; Wang X
    Chemosphere; 2022 Mar; 291(Pt 3):132964. PubMed ID: 34800502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of chars from the gasification and pyrolysis of rice waste streams towards their valorisation as adsorbent materials.
    Dias D; Lapa N; Bernardo M; Godinho D; Fonseca I; Miranda M; Pinto F; Lemos F
    Waste Manag; 2017 Jul; 65():186-194. PubMed ID: 28400156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Valorization of Different Fractions from Butiá Pomace by Pyrolysis: H
    Nunes IDS; Schnorr C; Perondi D; Godinho M; Diel JC; Machado LMM; Dalla Nora FB; Silva LFO; Dotto GL
    Molecules; 2022 Nov; 27(21):. PubMed ID: 36364342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes.
    Takaya CA; Fletcher LA; Singh S; Anyikude KU; Ross AB
    Chemosphere; 2016 Feb; 145():518-27. PubMed ID: 26702555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrolysis recycling of pig manure biochar adsorption material for decreasing ammonia nitrogen in biogas slurry.
    He L; Wang D; Zhu T; Lv Y; Li S
    Sci Total Environ; 2023 Jul; 881():163315. PubMed ID: 37028657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production and characterization of chars from cherry pulp via pyrolysis.
    Pehlivan E; Özbay N; Yargıç AS; Şahin RZ
    J Environ Manage; 2017 Dec; 203(Pt 3):1017-1025. PubMed ID: 28495055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-pyrolysis of rice straw with industrial wastes: Waste disposal and environmental remediation.
    Seo YD; Seo TC; Oh SY
    Waste Manag Res; 2022 Mar; 40(3):339-348. PubMed ID: 34142623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of char-based adsorbents from cotton textile waste assisted by iron salts at low pyrolysis temperature for Cr(VI) removal.
    Xu Z; Gu S; Sun Z; Zhang D; Zhou Y; Gao Y; Qi R; Chen W
    Environ Sci Pollut Res Int; 2020 Apr; 27(10):11012-11025. PubMed ID: 31953756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO
    Goel C; Mohan S; Dinesha P
    Sci Total Environ; 2021 Dec; 798():149296. PubMed ID: 34325142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of manure feedstock, slow pyrolysis, and hydrothermal temperature on manure thermochemical and combustion properties.
    Zhou S; Liang H; Han L; Huang G; Yang Z
    Waste Manag; 2019 Apr; 88():85-95. PubMed ID: 31079653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO
    Jung JM; Oh JI; Park YK; Lee J; Kwon EE
    Environ Res; 2019 Apr; 171():348-355. PubMed ID: 30716512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lead sorption characteristics of various chicken bone part-derived chars.
    Park JH; Wang JJ; Kim SH; Kang SW; Cho JS; Delaune RD; Ok YS; Seo DC
    Environ Geochem Health; 2019 Aug; 41(4):1675-1685. PubMed ID: 29344748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of pyrolytic chars and activated carbons derived from pilot-scale pyrolysis of used tires.
    Li SQ; Yao Q; Wen SE; Chi Y; Yan JH
    J Air Waste Manag Assoc; 2005 Sep; 55(9):1315-26. PubMed ID: 16259427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of pyrolysis gasification of livestock manure, food wastewater, and their co-digested sludge.
    Oh DY; Kim D; Park KY
    Chemosphere; 2024 Jun; 357():142007. PubMed ID: 38631497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.