BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 35843875)

  • 1. Approaches to Enhancing Electrical Conductivity of Pristine Metal-Organic Frameworks for Supercapacitor Applications.
    Wang T; Lei J; Wang Y; Pang L; Pan F; Chen KJ; Wang H
    Small; 2022 Aug; 18(32):e2203307. PubMed ID: 35843875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Progress of Advanced Conductive Metal-Organic Frameworks: Precise Synthesis, Electrochemical Energy Storage Applications, and Future Challenges.
    Xu G; Zhu C; Gao G
    Small; 2022 Nov; 18(44):e2203140. PubMed ID: 36050887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Layered double hydroxide-based electrode materials derived from metal-organic frameworks: synthesis and applications in supercapacitors.
    Luo F; San X; Wang Y; Meng D; Tao K
    Dalton Trans; 2024 Jun; 53(25):10403-10415. PubMed ID: 38779818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional Networked Metal-Organic Frameworks with Conductive Polypyrrole Tubes for Flexible Supercapacitors.
    Xu X; Tang J; Qian H; Hou S; Bando Y; Hossain MSA; Pan L; Yamauchi Y
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38737-38744. PubMed ID: 29082737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conductive Metal-Organic Frameworks for Supercapacitors.
    Niu L; Wu T; Chen M; Yang L; Yang J; Wang Z; Kornyshev AA; Jiang H; Bi S; Feng G
    Adv Mater; 2022 Dec; 34(52):e2200999. PubMed ID: 35358341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoarchitectures for Metal-Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications.
    Salunkhe RR; Kaneti YV; Kim J; Kim JH; Yamauchi Y
    Acc Chem Res; 2016 Dec; 49(12):2796-2806. PubMed ID: 27993000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MOFs-Graphene Composites Synthesis and Application for Electrochemical Supercapacitor: A Review.
    Shinde SK; Kim DY; Kumar M; Murugadoss G; Ramesh S; Tamboli AM; Yadav HM
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in Mn-Based MOFs and Their Derivatives for High-Performance Supercapacitor.
    Cheng H; Li J; Meng T; Shu D
    Small; 2024 May; 20(20):e2308804. PubMed ID: 38073335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advancements of Polyaniline/Metal Organic Framework (PANI/MOF) Composite Electrodes for Supercapacitor Applications: A Critical Review.
    Vinodh R; Babu RS; Sambasivam S; Gopi CVVM; Alzahmi S; Kim HJ; de Barros ALF; Obaidat IM
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Application of Metal-Organic Frameworks and Their Derivatives for Supercapacitors.
    Huang S; Shi XR; Sun C; Duan Z; Ma P; Xu S
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33207732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Utilization of Metal-Organic Frameworks and Their Derivatives Composite in Supercapacitor Electrodes.
    Liu Q; Li R; Li J; Zheng B; Song S; Chen L; Li T; Ma Y
    Chemistry; 2024 May; 30(30):e202400157. PubMed ID: 38520385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-supported metal-organic framework-based nanostructures as binder-free electrodes for supercapacitors.
    Zhao X; Tao K; Han L
    Nanoscale; 2022 Feb; 14(6):2155-2166. PubMed ID: 35107472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A General Synthesis of Nanostructured Conductive Metal-Organic Frameworks from Insulating MOF Precursors for Supercapacitors and Chemiresistive Sensors.
    Huang C; Sun W; Jin Y; Guo Q; Mücke D; Chu X; Liao Z; Chandrasekhar N; Huang X; Lu Y; Chen G; Wang M; Liu J; Zhang G; Yu M; Qi H; Kaiser U; Xu G; Feng X; Dong R
    Angew Chem Int Ed Engl; 2024 Jan; 63(3):e202313591. PubMed ID: 38011010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible Solid-State Supercapacitor Based on a Metal-Organic Framework Interwoven by Electrochemically-Deposited PANI.
    Wang L; Feng X; Ren L; Piao Q; Zhong J; Wang Y; Li H; Chen Y; Wang B
    J Am Chem Soc; 2015 Apr; 137(15):4920-3. PubMed ID: 25864960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-Organic Framework Derived Bimetallic Materials for Electrochemical Energy Storage.
    Sanati S; Abazari R; Albero J; Morsali A; García H; Liang Z; Zou R
    Angew Chem Int Ed Engl; 2021 May; 60(20):11048-11067. PubMed ID: 32910529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-plane Assembly of Distinctive 2D MOFs with Optimum Supercapacitive Performance.
    Deng T; Shi X; Zhang W; Wang Z; Zheng W
    iScience; 2020 Jun; 23(6):101220. PubMed ID: 32535022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superior Electrochemical Performance of Pristine Nickel Hexaaminobenzene MOF Supercapacitors Fabricated by Electrophoretic Deposition.
    Wechsler SC; Amir FZ
    ChemSusChem; 2020 Mar; 13(6):1491-1495. PubMed ID: 31814285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2D Metal-Organic Frameworks as Competent Electrocatalysts for Water Splitting.
    Wang CP; Lin YX; Cui L; Zhu J; Bu XH
    Small; 2023 Apr; 19(15):e2207342. PubMed ID: 36605002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-Dimensional Electrically Conductive Metal-Organic Frameworks as Chemiresistive Sensors.
    Park C; Baek JW; Shin E; Kim ID
    ACS Nanosci Au; 2023 Oct; 3(5):353-374. PubMed ID: 37868223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximizing the Potential of Electrically Conductive MOFs.
    Pham HTB; Choi JY; Stodolka M; Park J
    Acc Chem Res; 2024 Jan; ():. PubMed ID: 38294773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.