These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 35843893)

  • 1. Structurally Colored Radiative Cooling Cellulosic Films.
    Zhu W; Droguet B; Shen Q; Zhang Y; Parton TG; Shan X; Parker RM; De Volder MFL; Deng T; Vignolini S; Li T
    Adv Sci (Weinh); 2022 Sep; 9(26):e2202061. PubMed ID: 35843893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sub-ambient full-color passive radiative cooling under sunlight based on efficient quantum-dot photoluminescence.
    Wang X; Zhang Q; Wang S; Jin C; Zhu B; Su Y; Dong X; Liang J; Lu Z; Zhou L; Li W; Zhu S; Zhu J
    Sci Bull (Beijing); 2022 Sep; 67(18):1874-1881. PubMed ID: 36546301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal Color Retrofit to Polymer-Based Radiative Cooling Materials.
    Zhang Y; Feng WJ; Zhu W; Shan X; Lin WK; Guo LJ; Li T
    ACS Appl Mater Interfaces; 2023 May; 15(17):21008-21015. PubMed ID: 37069786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective spectral absorption of nanofibers for color-preserving daytime radiative cooling.
    Li X; Xu H; Yang Y; Li F; Ramakrishna S; Yu J; Ji D; Qin X
    Mater Horiz; 2023 Jul; 10(7):2487-2495. PubMed ID: 37039748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling.
    Rephaeli E; Raman A; Fan S
    Nano Lett; 2013 Apr; 13(4):1457-61. PubMed ID: 23461597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iridescent Daytime Radiative Cooling with No Absorption Peaks in the Visible Range.
    Ding Z; Pattelli L; Xu H; Sun W; Li X; Pan L; Zhao J; Wang C; Zhang X; Song Y; Qiu J; Li Y; Yang R
    Small; 2022 Jun; 18(25):e2202400. PubMed ID: 35587771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling.
    Li D; Liu X; Li W; Lin Z; Zhu B; Li Z; Li J; Li B; Fan S; Xie J; Zhu J
    Nat Nanotechnol; 2021 Feb; 16(2):153-158. PubMed ID: 33199884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly-Scattering Cellulose-Based Films for Radiative Cooling.
    Jaramillo-Fernandez J; Yang H; Schertel L; Whitworth GL; Garcia PD; Vignolini S; Sotomayor-Torres CM
    Adv Sci (Weinh); 2022 Mar; 9(8):e2104758. PubMed ID: 35038253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectrally Selective Nanoparticle Mixture Coating for Passive Daytime Radiative Cooling.
    Chae D; Lim H; So S; Son S; Ju S; Kim W; Rho J; Lee H
    ACS Appl Mater Interfaces; 2021 May; 13(18):21119-21126. PubMed ID: 33926186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scalable and Flexible Multi-Layer Prismatic Photonic Metamaterial Film for Efficient Daytime Radiative Cooling.
    Li W; Zhan H; Huang N; Ying Y; Yu J; Zheng J; Qiao L; Li J; Che S
    Small Methods; 2023 Dec; ():e2301258. PubMed ID: 38148329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Passive radiative cooling below ambient air temperature under direct sunlight.
    Raman AP; Anoma MA; Zhu L; Rephaeli E; Fan S
    Nature; 2014 Nov; 515(7528):540-4. PubMed ID: 25428501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photonic-Structure Colored Radiative Coolers for Daytime Subambient Cooling.
    Yu S; Zhang Q; Wang Y; Lv Y; Ma R
    Nano Lett; 2022 Jun; 22(12):4925-4932. PubMed ID: 35686917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-UV Passive Radiative Cooling Chiral Nematic Liquid Crystal Films for Thermal Management.
    Du Y; Li A; Zhang F; Gao H; Zhou X; Zhu J; Ye Z
    Small; 2024 May; ():e2400578. PubMed ID: 38805746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable Bacterial Cellulose-Based Radiative Cooling Materials with Switchable Transparency for Thermal Management and Enhanced Solar Energy Harvesting.
    Shi S; Lv P; Valenzuela C; Li B; Liu Y; Wang L; Feng W
    Small; 2023 Sep; 19(39):e2301957. PubMed ID: 37231557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable and Flexible Electrospun Film for Daytime Subambient Radiative Cooling.
    Jing W; Zhang S; Zhang W; Chen Z; Zhang C; Wu D; Gao Y; Zhu H
    ACS Appl Mater Interfaces; 2021 Jun; ():. PubMed ID: 34132091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling.
    Chen Y; Mandal J; Li W; Smith-Washington A; Tsai CC; Huang W; Shrestha S; Yu N; Han RPS; Cao A; Yang Y
    Sci Adv; 2020 Apr; 6(17):eaaz5413. PubMed ID: 32426464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Daytime Sub-Ambient Radiative Cooling with Vivid Structural Colors Mediated by Coupled Nanocavities.
    Jin S; Xiao M; Zhang W; Wang B; Zhao C
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):54676-54687. PubMed ID: 36454716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Scalable Microstructure Photonic Coating Fabricated by Roll-to-Roll "Defects" for Daytime Subambient Passive Radiative Cooling.
    Liu S; Sui C; Harbinson M; Pudlo M; Perera H; Zhang Z; Liu R; Ku Z; Islam MD; Liu Y; Wu R; Zhu Y; Genzer J; Khan SA; Hsu PC; Ryu JE
    Nano Lett; 2023 Sep; 23(17):7767-7774. PubMed ID: 37487140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermochromic Nanocellulose Films for Temperature-Adaptive Passive Cooling.
    Jaiswal AK; Hokkanen A; Khakalo S; Mäkelä T; Savolainen A; Kumar V
    ACS Appl Mater Interfaces; 2024 Mar; 16(12):15262-15272. PubMed ID: 38484044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling.
    Kong A; Cai B; Shi P; Yuan XC
    Opt Express; 2019 Oct; 27(21):30102-30115. PubMed ID: 31684263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.