These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35843893)

  • 21. Superhydrophobic and Recyclable Cellulose-Fiber-Based Composites for High-Efficiency Passive Radiative Cooling.
    Tian Y; Shao H; Liu X; Chen F; Li Y; Tang C; Zheng Y
    ACS Appl Mater Interfaces; 2021 May; 13(19):22521-22530. PubMed ID: 33950669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cross-Linked Porous Polymeric Coating without a Metal-Reflective Layer for Sub-Ambient Radiative Cooling.
    Son S; Liu Y; Chae D; Lee H
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):57832-57839. PubMed ID: 33345542
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling.
    Zhai Y; Ma Y; David SN; Zhao D; Lou R; Tan G; Yang R; Yin X
    Science; 2017 Mar; 355(6329):1062-1066. PubMed ID: 28183998
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scalable Colored Subambient Radiative Coolers Based on a Polymer-Tamm Photonic Structure.
    Huang T; Chen Q; Huang J; Lu Y; Xu H; Zhao M; Xu Y; Song W
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):16277-16287. PubMed ID: 36930799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flexible Radiative Cooling Textiles Based on Composite Nanoporous Fibers for Personal Thermal Management.
    Li M; Yan Z; Fan D
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):17848-17857. PubMed ID: 36977290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Daytime radiative cooler using porous TiO
    Zahir M; Benlattar M
    Appl Opt; 2020 Oct; 59(30):9400-9408. PubMed ID: 33104657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Creating an Eco-Friendly Building Coating with Smart Subambient Radiative Cooling.
    Xue X; Qiu M; Li Y; Zhang QM; Li S; Yang Z; Feng C; Zhang W; Dai JG; Lei D; Jin W; Xu L; Zhang T; Qin J; Wang H; Fan S
    Adv Mater; 2020 Oct; 32(42):e1906751. PubMed ID: 32924184
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spectrally Selective Inorganic-Based Multilayer Emitter for Daytime Radiative Cooling.
    Chae D; Kim M; Jung PH; Son S; Seo J; Liu Y; Lee BJ; Lee H
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8073-8081. PubMed ID: 31990166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Green-Manufactured and Recyclable Coatings for Subambient Daytime Radiative Cooling.
    Liu R; Zhou Z; Mo X; Liu P; Hu B; Duan J; Zhou J
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):46972-46979. PubMed ID: 36215717
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sustainable and Inexpensive Polydimethylsiloxane Sponges for Daytime Radiative Cooling.
    Zhou L; Rada J; Zhang H; Song H; Mirniaharikandi S; Ooi BS; Gan Q
    Adv Sci (Weinh); 2021 Dec; 8(23):e2102502. PubMed ID: 34672111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Subambient daytime radiative cooling textile based on nanoprocessed silk.
    Zhu B; Li W; Zhang Q; Li D; Liu X; Wang Y; Xu N; Wu Z; Li J; Li X; Catrysse PB; Xu W; Fan S; Zhu J
    Nat Nanotechnol; 2021 Dec; 16(12):1342-1348. PubMed ID: 34750560
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellulose-Based Radiative Cooling and Solar Heating Powers Ionic Thermoelectrics.
    Liao M; Banerjee D; Hallberg T; Åkerlind C; Alam MM; Zhang Q; Kariis H; Zhao D; Jonsson MP
    Adv Sci (Weinh); 2023 Mar; 10(8):e2206510. PubMed ID: 36646654
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody.
    Zhu L; Raman AP; Fan S
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12282-7. PubMed ID: 26392542
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Colored Daytime Radiative Cooling Textiles Supported by Semiconductor Quantum Dots.
    Cao J; Xu H; Li X; Gu Y
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19480-19489. PubMed ID: 37023362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ordered-Porous-Array Polymethyl Methacrylate Films for Radiative Cooling.
    Qi G; Tan X; Tu Y; Yang X; Qiao Y; Wang Y; Geng J; Yao S; Chen X
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):31277-31284. PubMed ID: 35771521
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Full-Color Solar-Heat-Resistant Films Based on Nanometer Optical Coatings.
    Cho JW; Lee EJ; Kim SK
    Nano Lett; 2022 Jan; 22(1):380-388. PubMed ID: 34958577
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Design of Near-Perfect Spectrum-Selective Mirror Based on Photonic Structures for Passive Cooling of Silicon Solar Cells.
    Gao M; Xia Y; Li R; Zhang Z; He Y; Zhang C; Chen L; Qi L; Si Y; Zhang Q; Zheng Y
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33322012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flexible composite film with artificial opal photonic crystals for efficient all-day passive radiative cooling.
    Nan F; Zhu YF; Wei HX; Lin Y; Fan B; Zhou L
    Opt Express; 2022 Feb; 30(4):6003-6015. PubMed ID: 35209548
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Passive directional sub-ambient daytime radiative cooling.
    Bhatia B; Leroy A; Shen Y; Zhao L; Gianello M; Li D; Gu T; Hu J; Soljačić M; Wang EN
    Nat Commun; 2018 Nov; 9(1):5001. PubMed ID: 30479326
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radiative Cooling: Principles, Progress, and Potentials.
    Hossain MM; Gu M
    Adv Sci (Weinh); 2016 Jul; 3(7):1500360. PubMed ID: 27812478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.