These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 35844156)
21. Environmental forcing of phytoplankton carbon-to-diversity ratio and carbon-to-chlorophyll ratio: A case study in Jiaozhou Bay, the Yellow Sea. Wang Y; Cui Z; Ding D; Yang Q; Zhu L; Qu K; Sun J; Wei Y Mar Pollut Bull; 2023 Dec; 197():115765. PubMed ID: 37988882 [TBL] [Abstract][Full Text] [Related]
22. Phytoplankton growth and community shift over a short-term high-CO Sharma D; Biswas H; Silori S; Bandyopadhyay D; Shaik AUR Environ Monit Assess; 2022 Jul; 194(8):581. PubMed ID: 35821440 [TBL] [Abstract][Full Text] [Related]
23. Physical-biological drivers modulating phytoplankton seasonal succession along the Northern Antarctic Peninsula. Costa RR; Ferreira A; de Souza MS; Tavano VM; Kerr R; Secchi ER; Brotas V; Dotto TS; Brito AC; Mendes CRB Environ Res; 2023 Aug; 231(Pt 3):116273. PubMed ID: 37257748 [TBL] [Abstract][Full Text] [Related]
24. Ecosystem responses in the southern Caribbean Sea to global climate change. Taylor GT; Muller-Karger FE; Thunell RC; Scranton MI; Astor Y; Varela R; Ghinaglia LT; Lorenzoni L; Fanning KA; Hameed S; Doherty O Proc Natl Acad Sci U S A; 2012 Nov; 109(47):19315-20. PubMed ID: 23071299 [TBL] [Abstract][Full Text] [Related]
25. Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate. Dierssen HM Proc Natl Acad Sci U S A; 2010 Oct; 107(40):17073-8. PubMed ID: 20861445 [TBL] [Abstract][Full Text] [Related]
26. Phytoplankton life strategies, phenological shifts and climate change in the North Atlantic Ocean from 1850 to 2100. Kléparski L; Beaugrand G; Edwards M; Ostle C Glob Chang Biol; 2023 Jul; 29(13):3833-3849. PubMed ID: 37026559 [TBL] [Abstract][Full Text] [Related]
27. Combined effects of elevated carbon dioxide and temperature on phytoplankton-zooplankton link: A multi-influence of climate change on freshwater planktonic communities. Li W; Xu X; Yao J; Tanaka N; Nishimura O; Ma H Sci Total Environ; 2019 Mar; 658():1175-1185. PubMed ID: 30677981 [TBL] [Abstract][Full Text] [Related]
28. Change of dominant phytoplankton groups in the eutrophic coastal sea due to atmospheric deposition. Li H; Chen Y; Zhou S; Wang F; Yang T; Zhu Y; Ma Q Sci Total Environ; 2021 Jan; 753():141961. PubMed ID: 32889319 [TBL] [Abstract][Full Text] [Related]
29. Subsurface chlorophyll maximum layers: enduring enigma or mystery solved? Cullen JJ Ann Rev Mar Sci; 2015; 7():207-39. PubMed ID: 25251268 [TBL] [Abstract][Full Text] [Related]
30. Ecosystem history of Mississippi River-influenced continental shelf revealed through preserved phytoplankton pigments. Rabalais NN; Atilla N; Normandeau C; Turner RE Mar Pollut Bull; 2004 Oct; 49(7-8):537-47. PubMed ID: 15476832 [TBL] [Abstract][Full Text] [Related]
31. Response of a coastal Baltic Sea diatom-dominated phytoplankton community to experimental heat shock and changing salinity. Stefanidou N; Genitsaris S; Lopez-Bautista J; Sommer U; Moustaka-Gouni M Oecologia; 2019 Oct; 191(2):461-474. PubMed ID: 31501978 [TBL] [Abstract][Full Text] [Related]
32. Phytoplankton response to climate changes and anthropogenic activities recorded by sedimentary pigments in a shallow eutrophied lake. Zhang H; Huo S; Yeager KM; He Z; Xi B; Li X; Ma C; Wu F Sci Total Environ; 2019 Jan; 647():1398-1409. PubMed ID: 30180346 [TBL] [Abstract][Full Text] [Related]
33. Spatial phytoplankton community structure revealed by photosynthetic pigments in the tropical estuarine-coastal zone (Bangladesh). Mo Y; Chen K; Ahmed MK; Gu H; Ou D; Li W; Huang H; Wang L Mar Environ Res; 2024 Oct; 201():106696. PubMed ID: 39163655 [TBL] [Abstract][Full Text] [Related]
34. Reconciling the opposing effects of warming on phytoplankton biomass in 188 large lakes. Kraemer BM; Mehner T; Adrian R Sci Rep; 2017 Sep; 7(1):10762. PubMed ID: 28883487 [TBL] [Abstract][Full Text] [Related]
35. Variations in phytoplankton carbon biomass, community assemblages and species succession along Lake Burullus, Northern Egypt. Ali EM; Khairy HM J Environ Biol; 2012 Sep; 33(5):945-53. PubMed ID: 23734464 [TBL] [Abstract][Full Text] [Related]
36. On the use of chemotaxonomy, a phytoplankton identification and quantification method based on pigment for quick surveys of subtropical reservoirs. Yu X; Yang JR; Chen J; Isabwe A; Yang J Environ Sci Pollut Res Int; 2021 Jan; 28(3):3544-3555. PubMed ID: 32920686 [TBL] [Abstract][Full Text] [Related]
37. Response of phytoplankton photophysiology to varying environmental conditions in the Sub-Antarctic and Polar Frontal Zone. Cheah W; McMinn A; Griffiths FB; Westwood KJ; Wright SW; Clementson LA PLoS One; 2013; 8(8):e72165. PubMed ID: 23977242 [TBL] [Abstract][Full Text] [Related]
38. Diversity, community structure, and quantity of eukaryotic phytoplankton revealed using 18S rRNA and plastid 16S rRNA genes and pigment markers: a case study of the Pearl River Estuary. Xu S; Li G; He C; Huang Y; Yu D; Deng H; Tong Z; Wang Y; Dupuy C; Huang B; Shen Z; Xu J; Gong J Mar Life Sci Technol; 2023 Aug; 5(3):415-430. PubMed ID: 37637251 [TBL] [Abstract][Full Text] [Related]
39. Climate-driven trends in contemporary ocean productivity. Behrenfeld MJ; O'Malley RT; Siegel DA; McClain CR; Sarmiento JL; Feldman GC; Milligan AJ; Falkowski PG; Letelier RM; Boss ES Nature; 2006 Dec; 444(7120):752-5. PubMed ID: 17151666 [TBL] [Abstract][Full Text] [Related]
40. Phytoplankton pigment dynamics in marine lake fluctuating between stratified and holomictic euxinic conditions. Marguš M; Ahel M; Čanković M; Ljubešić Z; Terzić S; Hodak Kobasić V; Ciglenečki I Mar Pollut Bull; 2023 Jun; 191():114931. PubMed ID: 37075558 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]