These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 35845101)
1. Dataset containing physiological amounts of spike-in proteins into murine C2C12 background as a ground truth quantitative LC-MS/MS reference. Uszkoreit J; Barkovits K; Pacharra S; Pfeiffer K; Steinbach S; Marcus K; Eisenacher M Data Brief; 2022 Aug; 43():108435. PubMed ID: 35845101 [TBL] [Abstract][Full Text] [Related]
2. Assessment of current mass spectrometric workflows for the quantification of low abundant proteins and phosphorylation sites. Bauer M; Ahrné E; Baron AP; Glatter T; Fava LL; Santamaria A; Nigg EA; Schmidt A Data Brief; 2015 Dec; 5():297-304. PubMed ID: 26550600 [TBL] [Abstract][Full Text] [Related]
3. Proteome identification of the silkworm middle silk gland. Li JY; Ye LP; Che JQ; Song J; You ZY; Wang SH; Zhong BX Data Brief; 2016 Mar; 6():903-7. PubMed ID: 26937469 [TBL] [Abstract][Full Text] [Related]
4. Benchmarking quantitative label-free LC-MS data processing workflows using a complex spiked proteomic standard dataset. Ramus C; Hovasse A; Marcellin M; Hesse AM; Mouton-Barbosa E; Bouyssié D; Vaca S; Carapito C; Chaoui K; Bruley C; Garin J; Cianférani S; Ferro M; Van Dorssaeler A; Burlet-Schiltz O; Schaeffer C; Couté Y; Gonzalez de Peredo A J Proteomics; 2016 Jan; 132():51-62. PubMed ID: 26585461 [TBL] [Abstract][Full Text] [Related]
5. A new SWATH ion library for mouse adult hippocampal neural stem cells. Braccia C; Espinal MP; Pini M; De Pietri Tonelli D; Armirotti A Data Brief; 2018 Jun; 18():1-8. PubMed ID: 29896482 [TBL] [Abstract][Full Text] [Related]
6. Sensitive Immunopeptidomics by Leveraging Available Large-Scale Multi-HLA Spectral Libraries, Data-Independent Acquisition, and MS/MS Prediction. Pak H; Michaux J; Huber F; Chong C; Stevenson BJ; Müller M; Coukos G; Bassani-Sternberg M Mol Cell Proteomics; 2021; 20():100080. PubMed ID: 33845167 [TBL] [Abstract][Full Text] [Related]
7. Dataset from a proteomics analysis of tumor antigens shared between an allogenic tumor cell lysate vaccine and pancreatic tumor tissue. Stingl C; Lau SP; van der Burg SH; Aerts JG; van Eijck CHJ; Luider TM Data Brief; 2022 Oct; 44():108490. PubMed ID: 35959468 [TBL] [Abstract][Full Text] [Related]
8. The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS. Geromanos SJ; Vissers JP; Silva JC; Dorschel CA; Li GZ; Gorenstein MV; Bateman RH; Langridge JI Proteomics; 2009 Mar; 9(6):1683-95. PubMed ID: 19294628 [TBL] [Abstract][Full Text] [Related]
9. Optimization of mass spectrometric parameters improve the identification performance of capillary zone electrophoresis for single-shot bottom-up proteomics analysis. Zhang Z; Dovichi NJ Anal Chim Acta; 2018 Feb; 1001():93-99. PubMed ID: 29291811 [TBL] [Abstract][Full Text] [Related]
10. Extracting Accurate Precursor Information for Tandem Mass Spectra by RawConverter. He L; Diedrich J; Chu YY; Yates JR Anal Chem; 2015 Nov; 87(22):11361-7. PubMed ID: 26499134 [TBL] [Abstract][Full Text] [Related]
11. Peptidomics dataset: Blood plasma and serum samples of healthy donors fractionated on a set of chromatography sorbents. Arapidi G; Osetrova M; Ivanova O; Butenko I; Saveleva T; Pavlovich P; Anikanov N; Ivanov V; Govorun V Data Brief; 2018 Jun; 18():1204-1211. PubMed ID: 29900295 [TBL] [Abstract][Full Text] [Related]
13. In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics. Audain E; Uszkoreit J; Sachsenberg T; Pfeuffer J; Liang X; Hermjakob H; Sanchez A; Eisenacher M; Reinert K; Tabb DL; Kohlbacher O; Perez-Riverol Y J Proteomics; 2017 Jan; 150():170-182. PubMed ID: 27498275 [TBL] [Abstract][Full Text] [Related]
14. Combining Precursor and Fragment Information for Improved Detection of Differential Abundance in Data Independent Acquisition. Huang T; Bruderer R; Muntel J; Xuan Y; Vitek O; Reiter L Mol Cell Proteomics; 2020 Feb; 19(2):421-430. PubMed ID: 31888964 [TBL] [Abstract][Full Text] [Related]
15. Proteomic datasets of HeLa and SiHa cell lines acquired by DDA-PASEF and diaPASEF. Huang Z; Kong W; Wong BJ; Gao H; Guo T; Liu X; Du X; Wong L; Goh WWB Data Brief; 2022 Apr; 41():107919. PubMed ID: 35198691 [TBL] [Abstract][Full Text] [Related]
16. Dataset of quantitative proteomic analysis to understand aging processes in rabbit liver. Amin B; Robinson RAS Data Brief; 2020 Aug; 31():105701. PubMed ID: 32490075 [TBL] [Abstract][Full Text] [Related]
18. DIA proteomics data from a UPS1-spiked Gotti C; Roux-Dalvai F; Joly-Beauparlant C; Mangnier L; Leclercq M; Droit A Data Brief; 2022 Apr; 41():107829. PubMed ID: 35198661 [TBL] [Abstract][Full Text] [Related]
19. Dataset from proteomic analysis of rat, mouse, and human liver microsomes and S9 fractions. Golizeh M; Schneider C; Ohlund LB; Sleno L Data Brief; 2015 Jun; 3():95-8. PubMed ID: 26217725 [TBL] [Abstract][Full Text] [Related]