BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35845157)

  • 21. Using Machine Learning Algorithms to Predict Hepatitis B Surface Antigen Seroclearance.
    Tian X; Chong Y; Huang Y; Guo P; Li M; Zhang W; Du Z; Li X; Hao Y
    Comput Math Methods Med; 2019; 2019():6915850. PubMed ID: 31281411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting adverse drug events in older inpatients: a machine learning study.
    Hu Q; Wu B; Wu J; Xu T
    Int J Clin Pharm; 2022 Dec; 44(6):1304-1311. PubMed ID: 36115909
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting 7-day unplanned readmission in elderly patients with coronary heart disease using machine learning.
    Song X; Tong Y; Luo Y; Chang H; Gao G; Dong Z; Wu X; Tong R
    Front Cardiovasc Med; 2023; 10():1190038. PubMed ID: 37614939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Explainable Machine Learning Model to Prediction EGFR Mutation in Lung Cancer.
    Yang R; Xiong X; Wang H; Li W
    Front Oncol; 2022; 12():924144. PubMed ID: 35814445
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Innovative Artificial Intelligence-Based App for the Diagnosis of Gestational Diabetes Mellitus (GDM-AI): Development Study.
    Shen J; Chen J; Zheng Z; Zheng J; Liu Z; Song J; Wong SY; Wang X; Huang M; Fang PH; Jiang B; Tsang W; He Z; Liu T; Akinwunmi B; Wang CC; Zhang CJP; Huang J; Ming WK
    J Med Internet Res; 2020 Sep; 22(9):e21573. PubMed ID: 32930674
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of Machine Learning Algorithms and Internal Validation of a Kidney Risk Prediction Model for Type 2 Diabetes Mellitus.
    Wang Y; Yao HX; Liu ZY; Wang YT; Zhang SW; Song YY; Zhang Q; Gao HD; Xu JC
    Int J Gen Med; 2024; 17():2299-2309. PubMed ID: 38799198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surgical Methods and Social Factors Are Associated With Long-Term Survival in Follicular Thyroid Carcinoma: Construction and Validation of a Prognostic Model Based on Machine Learning Algorithms.
    Mao Y; Huang Y; Xu L; Liang J; Lin W; Huang H; Li L; Wen J; Chen G
    Front Oncol; 2022; 12():816427. PubMed ID: 35800057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of Multiprognostic Index Domain Scores, Clinical Data, and Machine Learning to Improve 12-Month Mortality Risk Prediction in Older Hospitalized Patients: Prospective Cohort Study.
    Woodman RJ; Bryant K; Sorich MJ; Pilotto A; Mangoni AA
    J Med Internet Res; 2021 Jun; 23(6):e26139. PubMed ID: 34152274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of Conventional Logistic Regression and Machine Learning Methods for Predicting Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage: A Multicentric Observational Cohort Study.
    Hu P; Li Y; Liu Y; Guo G; Gao X; Su Z; Wang L; Deng G; Yang S; Qi Y; Xu Y; Ye L; Sun Q; Nie X; Sun Y; Li M; Zhang H; Chen Q
    Front Aging Neurosci; 2022; 14():857521. PubMed ID: 35783143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel Insights on Establishing Machine Learning-Based Stroke Prediction Models Among Hypertensive Adults.
    Huang X; Cao T; Chen L; Li J; Tan Z; Xu B; Xu R; Song Y; Zhou Z; Wang Z; Wei Y; Zhang Y; Li J; Huo Y; Qin X; Wu Y; Wang X; Wang H; Cheng X; Xu X; Liu L
    Front Cardiovasc Med; 2022; 9():901240. PubMed ID: 35600480
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using Machine Learning Approaches to Predict Short-Term Risk of Cardiotoxicity Among Patients with Colorectal Cancer After Starting Fluoropyrimidine-Based Chemotherapy.
    Li C; Chen L; Chou C; Ngorsuraches S; Qian J
    Cardiovasc Toxicol; 2022 Feb; 22(2):130-140. PubMed ID: 34792740
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A machine learning model for predicting congenital heart defects from administrative data.
    Shi H; Book W; Raskind-Hood C; Downing KF; Farr SL; Bell MN; Sameni R; Rodriguez FH; Kamaleswaran R
    Birth Defects Res; 2023 Nov; 115(18):1693-1707. PubMed ID: 37681293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of rapid and effective risk prediction models for stroke in the Chinese population: a cross-sectional study.
    Qiu Y; Cheng S; Wu Y; Yan W; Hu S; Chen Y; Xu Y; Chen X; Yang J; Chen X; Zheng H
    BMJ Open; 2023 Mar; 13(3):e068045. PubMed ID: 36858471
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Value of machine learning algorithms for predicting diabetes risk: A subset analysis from a real-world retrospective cohort study.
    Mao Y; Zhu Z; Pan S; Lin W; Liang J; Huang H; Li L; Wen J; Chen G
    J Diabetes Investig; 2023 Feb; 14(2):309-320. PubMed ID: 36345236
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine learning algorithms to predict intraoperative hemorrhage in surgical patients: a modeling study of real-world data in Shanghai, China.
    Shi Y; Zhang G; Ma C; Xu J; Xu K; Zhang W; Wu J; Xu L
    BMC Med Inform Decis Mak; 2023 Aug; 23(1):156. PubMed ID: 37563676
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative Effectiveness of Machine Learning Approaches for Predicting Gastrointestinal Bleeds in Patients Receiving Antithrombotic Treatment.
    Herrin J; Abraham NS; Yao X; Noseworthy PA; Inselman J; Shah ND; Ngufor C
    JAMA Netw Open; 2021 May; 4(5):e2110703. PubMed ID: 34019087
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Risk-Factor Model for Antineoplastic Drug-Induced Serious Adverse Events in Cancer Inpatients: A Retrospective Study Based on the Global Trigger Tool and Machine Learning.
    Zhang N; Pan LY; Chen WY; Ji HH; Peng GQ; Tang ZW; Wang HL; Jia YT; Gong J
    Front Pharmacol; 2022; 13():896104. PubMed ID: 35847000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of Neurological Outcomes in Out-of-hospital Cardiac Arrest Survivors Immediately after Return of Spontaneous Circulation: Ensemble Technique with Four Machine Learning Models.
    Heo JH; Kim T; Shin J; Suh GJ; Kim J; Jung YS; Park SM; Kim S;
    J Korean Med Sci; 2021 Jul; 36(28):e187. PubMed ID: 34282605
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Machine learning-assisted decision-support models to better predict patients with calculous pyonephrosis.
    Liu H; Wang X; Tang K; Peng E; Xia D; Chen Z
    Transl Androl Urol; 2021 Feb; 10(2):710-723. PubMed ID: 33718073
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Machine learning-based models to support decision-making in emergency department triage for patients with suspected cardiovascular disease.
    Jiang H; Mao H; Lu H; Lin P; Garry W; Lu H; Yang G; Rainer TH; Chen X
    Int J Med Inform; 2021 Jan; 145():104326. PubMed ID: 33197878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.