These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35845251)

  • 1. Using Satellite Observations to Evaluate Model Microphysical Representation of Arctic Mixed-Phase Clouds.
    Shaw J; McGraw Z; Bruno O; Storelvmo T; Hofer S
    Geophys Res Lett; 2022 Feb; 49(3):e2021GL096191. PubMed ID: 35845251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arctic Clouds and Precipitation in the Community Earth System Model Version 2.
    McIlhattan EA; Kay JE; L'Ecuyer TS
    J Geophys Res Atmos; 2020 Nov; 125(22):e2020JD032521. PubMed ID: 33381360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Process-model simulations of cloud albedo enhancement by aerosols in the Arctic.
    Kravitz B; Wang H; Rasch PJ; Morrison H; Solomon AB
    Philos Trans A Math Phys Eng Sci; 2014 Dec; 372(2031):. PubMed ID: 25404677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High cloud coverage over melted areas dominates the impact of clouds on the albedo feedback in the Arctic.
    He M; Hu Y; Chen N; Wang D; Huang J; Stamnes K
    Sci Rep; 2019 Jul; 9(1):9529. PubMed ID: 31266977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Space lidar observations constrain longwave cloud feedback.
    Vaillant de Guélis T; Chepfer H; Guzman R; Bonazzola M; Winker DM; Noel V
    Sci Rep; 2018 Nov; 8(1):16570. PubMed ID: 30410067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A climatologically significant aerosol longwave indirect effect in the Arctic.
    Lubin D; Vogelmann AM
    Nature; 2006 Jan; 439(7075):453-6. PubMed ID: 16437112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerosol indirect effects on the nighttime Arctic Ocean surface from thin, predominantly liquid clouds.
    Zamora LM; Kahn RA; Eckhardt S; McComiskey A; Sawamura P; Moore R; Stohl A
    Atmos Chem Phys; 2017 Jun; 17(12):7311-7332. PubMed ID: 32849860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ARCTIC CHANGE AND POSSIBLE INFLUENCE ON MID-LATITUDE CLIMATE AND WEATHER: A US CLIVAR White Paper.
    Cohen J; Zhang X; Francis J; Jung T; Kwok R; Overland J; Ballinger T; Blackport R; Bhatt US; Chen H; Coumou D; Feldstein S; Handorf D; Hell M; Henderson G; Ionita M; Kretschmer M; Laliberte F; Lee S; Linderholm H; Maslowski W; Rigor I; Routson C; Screen J; Semmler T; Singh D; Smith D; Stroeve J; Taylor PC; Vihma T; Wang M; Wang S; Wu Y; Wendisch M; Yoon J
    US CLIVAR Rep; 2018 Mar; n/a():. PubMed ID: 31633127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level.
    Taylor PC; Kato S; Xu KM; Cai M
    J Geophys Res Atmos; 2015 Dec; 120(24):12656-12678. PubMed ID: 27818851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Rossby Centre Regional Atmospheric Climate Model part II: application to the Arctic climate.
    Jones CG; Wyser K; Ullerstig A; Willén U
    Ambio; 2004 Jun; 33(4-5):211-20. PubMed ID: 15264599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining In Situ and Satellite Observations to Understand the Vertical Structure of Tropical Anvil Cloud Microphysical Properties During the TC4 Experiment.
    Yue Q; Jiang JH; Heymsfield A; Liou KN; Gu Y; Sinha A
    Earth Space Sci; 2020 Apr; 7(4):e2020EA001147. PubMed ID: 32715026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming.
    Cronin TW; Tziperman E
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11490-5. PubMed ID: 26324919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Annual cycle observations of aerosols capable of ice formation in central Arctic clouds.
    Creamean JM; Barry K; Hill TCJ; Hume C; DeMott PJ; Shupe MD; Dahlke S; Willmes S; Schmale J; Beck I; Hoppe CJM; Fong A; Chamberlain E; Bowman J; Scharien R; Persson O
    Nat Commun; 2022 Jun; 13(1):3537. PubMed ID: 35725737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The implications of dust ice nuclei effect on cloud top temperature in a complex mesoscale convective system.
    Li R; Dong X; Guo J; Fu Y; Zhao C; Wang Y; Min Q
    Sci Rep; 2017 Oct; 7(1):13826. PubMed ID: 29061971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observational constraints on mixed-phase clouds imply higher climate sensitivity.
    Tan I; Storelvmo T; Zelinka MD
    Science; 2016 Apr; 352(6282):224-7. PubMed ID: 27124459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observational evidence that cloud feedback amplifies global warming.
    Ceppi P; Nowack P
    Proc Natl Acad Sci U S A; 2021 Jul; 118(30):. PubMed ID: 34282010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spaceborne Evidence That Ice-Nucleating Particles Influence High-Latitude Cloud Phase.
    Carlsen T; David RO
    Geophys Res Lett; 2022 Jul; 49(14):e2022GL098041. PubMed ID: 36249281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong Dependence of Atmospheric Feedbacks on Mixed-Phase Microphysics and Aerosol-Cloud Interactions in HadGEM3.
    Bodas-Salcedo A; Mulcahy JP; Andrews T; Williams KD; Ringer MA; Field PR; Elsaesser GS
    J Adv Model Earth Syst; 2019 Jun; 11(6):1735-1758. PubMed ID: 31598189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertical structure of recent Arctic warming.
    Graversen RG; Mauritsen T; Tjernström M; Källén E; Svensson G
    Nature; 2008 Jan; 451(7174):53-6. PubMed ID: 18172495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of explicit atmospheric convection at high CO2.
    Arnold NP; Branson M; Burt MA; Abbot DS; Kuang Z; Randall DA; Tziperman E
    Proc Natl Acad Sci U S A; 2014 Jul; 111(30):10943-8. PubMed ID: 25024204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.