These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35846121)

  • 1. D3K: The Dissimilarity-Density-Dynamic Radius K-means Clustering Algorithm for scRNA-Seq Data.
    Liu G; Li M; Wang H; Lin S; Xu J; Li R; Tang M; Li C
    Front Genet; 2022; 13():912711. PubMed ID: 35846121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling.
    Vera JF; Macías R
    Psychometrika; 2021 Jun; 86(2):489-513. PubMed ID: 34008128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ScCAEs: deep clustering of single-cell RNA-seq via convolutional autoencoder embedding and soft K-means.
    Hu H; Li Z; Li X; Yu M; Pan X
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34472585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Similarity and Dissimilarity Regularized Nonnegative Matrix Factorization for Single-Cell RNA-seq Analysis.
    Zhu YL; Yuan SS; Liu JX
    Interdiscip Sci; 2022 Mar; 14(1):45-54. PubMed ID: 34231183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dimension Reduction and Clustering Models for Single-Cell RNA Sequencing Data: A Comparative Study.
    Feng C; Liu S; Zhang H; Guan R; Li D; Zhou F; Liang Y; Feng X
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32235704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast and memory-efficient scRNA-seq
    Baker DN; Dyjack N; Braverman V; Hicks SC; Langmead B
    ACM BCB; 2021 Aug; 2021():. PubMed ID: 34778889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research and Application of Clustering Algorithm for Text Big Data.
    Chen ZL
    Comput Intell Neurosci; 2022; 2022():7042778. PubMed ID: 35720917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An enhanced deterministic K-Means clustering algorithm for cancer subtype prediction from gene expression data.
    Nidheesh N; Abdul Nazeer KA; Ameer PM
    Comput Biol Med; 2017 Dec; 91():213-221. PubMed ID: 29100115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing the time requirement of k-means algorithm.
    Osamor VC; Adebiyi EF; Oyelade JO; Doumbia S
    PLoS One; 2012; 7(12):e49946. PubMed ID: 23239974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Improved K-Means Algorithm Based on Evidence Distance.
    Zhu A; Hua Z; Shi Y; Tang Y; Miao L
    Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Choice of an Appropriate Information Dissimilarity Measure for Hierarchical Clustering of River Streamflow Time Series, Based on Calculated Lyapunov Exponent and Kolmogorov Measures.
    Mihailović DT; Nikolić-Đorić E; Malinović-Milićević S; Singh VP; Mihailović A; Stošić T; Stošić B; Drešković N
    Entropy (Basel); 2019 Feb; 21(2):. PubMed ID: 33266929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying cell types from single-cell data based on similarities and dissimilarities between cells.
    Li Y; Luo P; Lu Y; Wu FX
    BMC Bioinformatics; 2021 May; 22(Suppl 3):255. PubMed ID: 34006217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation.
    Wang J; Xia J; Tan D; Lin R; Su Y; Zheng CH
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Model on Reinforce K-Means Using Location Division Model and Outlier of Initial Value for Lowering Data Cost.
    Jung SH; Lee H; Huh JH
    Entropy (Basel); 2020 Aug; 22(8):. PubMed ID: 33286671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The global Minmax
    Wang X; Bai Y
    Springerplus; 2016; 5(1):1665. PubMed ID: 27733969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Cell Transcriptome Profiling Simulation Reveals the Impact of Sequencing Parameters and Algorithms on Clustering.
    Liu Y; Wu A; Peng X; Liu X; Liu G; Liu L
    Life (Basel); 2021 Jul; 11(7):. PubMed ID: 34357088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SUSCC: Secondary Construction of Feature Space based on UMAP for Rapid and Accurate Clustering Large-scale Single Cell RNA-seq Data.
    Wang HY; Zhao JP; Zheng CH
    Interdiscip Sci; 2021 Mar; 13(1):83-90. PubMed ID: 33475958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. K-Means Clustering With Natural Density Peaks for Discovering Arbitrary-Shaped Clusters.
    Cheng D; Huang J; Zhang S; Xia S; Wang G; Xie J
    IEEE Trans Neural Netw Learn Syst; 2024 Aug; 35(8):11077-11090. PubMed ID: 37027748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LRSK: a low-rank self-representation K-means method for clustering single-cell RNA-sequencing data.
    Sun YS; Ou-Yang L; Dai DQ
    Mol Omics; 2020 Oct; 16(5):465-473. PubMed ID: 32572422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.