BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 35846332)

  • 1. Autophagy in Bone Remodeling: A Regulator of Oxidative Stress.
    Zhu C; Shen S; Zhang S; Huang M; Zhang L; Chen X
    Front Endocrinol (Lausanne); 2022; 13():898634. PubMed ID: 35846332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease.
    Ornatowski W; Lu Q; Yegambaram M; Garcia AE; Zemskov EA; Maltepe E; Fineman JR; Wang T; Black SM
    Redox Biol; 2020 Sep; 36():101679. PubMed ID: 32818797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SIRT3: A Potential Target of Different Types of Osteoporosis.
    Pan B; Chen C; Zhao Y; Cai J; Fu S; Liu J
    Cell Biochem Biophys; 2024 Mar; ():. PubMed ID: 38512537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibroblast growth factor 7 protects osteoblasts against oxidative damage through targeting mitochondria.
    Liu X; Hu X; Niu C; Yang Y; Huang Z; Xie J
    FASEB J; 2024 Mar; 38(5):e23524. PubMed ID: 38466191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Till Death Do Us Part: The Marriage of Autophagy and Apoptosis.
    Cooper KF
    Oxid Med Cell Longev; 2018; 2018():4701275. PubMed ID: 29854084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Intricate Balance between Life and Death: ROS, Cathepsins, and Their Interplay in Cell Death and Autophagy.
    Voronina MV; Frolova AS; Kolesova EP; Kuldyushev NA; Parodi A; Zamyatnin AA
    Int J Mol Sci; 2024 Apr; 25(7):. PubMed ID: 38612897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous Nanomaterials Targeting Autophagy in Bone Regeneration.
    Zhang Q; Xiao L; Xiao Y
    Pharmaceutics; 2021 Sep; 13(10):. PubMed ID: 34683866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of autophagy in bone metabolism and clinical significance.
    Wang J; Zhang Y; Cao J; Wang Y; Anwar N; Zhang Z; Zhang D; Ma Y; Xiao Y; Xiao L; Wang X
    Autophagy; 2023 Sep; 19(9):2409-2427. PubMed ID: 36858962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative Stress and Inflammation in Osteoporosis: Molecular Mechanisms Involved and the Relationship with microRNAs.
    Iantomasi T; Romagnoli C; Palmini G; Donati S; Falsetti I; Miglietta F; Aurilia C; Marini F; Giusti F; Brandi ML
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress: A common pathological state in a high-risk population for osteoporosis.
    Zhang C; Li H; Li J; Hu J; Yang K; Tao L
    Biomed Pharmacother; 2023 Jul; 163():114834. PubMed ID: 37163779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpinetin ameliorates bone loss in LPS-induced inflammation osteolysis via ROS mediated P38/PI3K signaling pathway.
    Wei L; Chen W; Huang L; Wang H; Su Y; Liang J; Lian H; Xu J; Zhao J; Liu Q
    Pharmacol Res; 2022 Oct; 184():106400. PubMed ID: 35988868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-inflammatory and antioxidant traditional Chinese Medicine in treatment and prevention of osteoporosis.
    Li Q; Tian C; Liu X; Li D; Liu H
    Front Pharmacol; 2023; 14():1203767. PubMed ID: 37441527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper metabolism in cell death and autophagy.
    Xue Q; Kang R; Klionsky DJ; Tang D; Liu J; Chen X
    Autophagy; 2023 Aug; 19(8):2175-2195. PubMed ID: 37055935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone microenvironment regulative hydrogels with ROS scavenging and prolonged oxygen-generating for enhancing bone repair.
    Sun H; Xu J; Wang Y; Shen S; Xu X; Zhang L; Jiang Q
    Bioact Mater; 2023 Jun; 24():477-496. PubMed ID: 36714330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trimethylamine-N-Oxide Promotes Osteoclast Differentiation and Bone Loss via Activating ROS-Dependent NF-κB Signaling Pathway.
    Wang N; Hao Y; Fu L
    Nutrients; 2022 Sep; 14(19):. PubMed ID: 36235607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoporosis pathogenesis and treatment: existing and emerging avenues.
    Liang B; Burley G; Lin S; Shi YC
    Cell Mol Biol Lett; 2022 Sep; 27(1):72. PubMed ID: 36058940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Advanced Glycation End-Products and Oxidative Stress in Type-2-Diabetes-Induced Bone Fragility and Implications on Fracture Risk Stratification.
    Cavati G; Pirrotta F; Merlotti D; Ceccarelli E; Calabrese M; Gennari L; Mingiano C
    Antioxidants (Basel); 2023 Apr; 12(4):. PubMed ID: 37107303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purine metabolism in the development of osteoporosis.
    Yang K; Li J; Tao L
    Biomed Pharmacother; 2022 Nov; 155():113784. PubMed ID: 36271563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxia-Inducible Factors Signaling in Osteogenesis and Skeletal Repair.
    Qin Q; Liu Y; Yang Z; Aimaijiang M; Ma R; Yang Y; Zhang Y; Zhou Y
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal correlation between HIF-1α and bone regeneration.
    Tao J; Miao R; Liu G; Qiu X; Yang B; Tan X; Liu L; Long J; Tang W; Jing W
    FASEB J; 2022 Oct; 36(10):e22520. PubMed ID: 36065633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.