These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 35846464)
21. Genotype by environment interaction and yield stability of cowpea ( Goa Y; Mohammed H; Worku W; Urage E Heliyon; 2022 Mar; 8(3):e09013. PubMed ID: 35309407 [TBL] [Abstract][Full Text] [Related]
22. First Report of Pestalotiopsis Species Causing Leaf Spot of Cowpea (Vigna unguiculata) in India. Mahadevakumar S; Janardhana GR Plant Dis; 2014 May; 98(5):686. PubMed ID: 30708519 [TBL] [Abstract][Full Text] [Related]
23. Modeling of Cowpea ( Carvalho M; Halecki W Plants (Basel); 2021 May; 10(6):. PubMed ID: 34071890 [TBL] [Abstract][Full Text] [Related]
24. Genetic progress in cowpea [Vigna unguiculata (L.) Walp.] stemming from breeding modernization efforts at the International Institute of Tropical Agriculture. Ongom PO; Fatokun C; Togola A; Dieng I; Salvo S; Gardunia B; Mohammed SB; Boukar O Plant Genome; 2024 Jun; 17(2):e20462. PubMed ID: 38778513 [TBL] [Abstract][Full Text] [Related]
25. Leaf morphology in Cowpea [Vigna unguiculata (L.) Walp]: QTL analysis, physical mapping and identifying a candidate gene using synteny with model legume species. Pottorff M; Ehlers JD; Fatokun C; Roberts PA; Close TJ BMC Genomics; 2012 Jun; 13():234. PubMed ID: 22691139 [TBL] [Abstract][Full Text] [Related]
26. Characterization of Induced High Yielding Cowpea Mutant Lines Using Physiological, Biochemical and Molecular Markers. Raina A; Laskar RA; Tantray YR; Khursheed S; Wani MR; Khan S Sci Rep; 2020 Feb; 10(1):3687. PubMed ID: 32111942 [TBL] [Abstract][Full Text] [Related]
27. Cowpea Immature Pods and Grains Evaluation: An Opportunity for Different Food Sources. Carvalho M; Carnide V; Sobreira C; Castro I; Coutinho J; Barros A; Rosa E Plants (Basel); 2022 Aug; 11(16):. PubMed ID: 36015383 [TBL] [Abstract][Full Text] [Related]
29. Effect of sowing distances on edible pod yields and yield components of three vegetable cowpea cultivars (Vigna unguiculata L. Walp.) Sesquipedalis subspecies, grown in Northeast Thailand. Wantana S; Sinsiri N; Silapanont M; Seedasod S Pak J Biol Sci; 2007 Nov; 10(22):4069-74. PubMed ID: 19090281 [TBL] [Abstract][Full Text] [Related]
30. Performance and Stability of Pearl Millet Varieties for Grain Yield and Micronutrients in Arid and Semi-Arid Regions of India. Sanjana Reddy P; Satyavathi CT; Khandelwal V; Patil HT; Gupta PC; Sharma LD; Mungra KD; Singh SP; Narasimhulu R; Bhadarge HH; Iyanar K; Tripathi MK; Yadav D; Bhardwaj R; Talwar AM; Tiwari VK; Kachole UG; Sravanti K; Shanthi Priya M; Athoni BK; Anuradha N; Govindaraj M; Nepolean T; Tonapi VA Front Plant Sci; 2021; 12():670201. PubMed ID: 34135925 [TBL] [Abstract][Full Text] [Related]
31. Efficacy of Lado A; Umar Sani F; Usman Yahaya S; Kwalle Karaye A Heliyon; 2018 Aug; 4(8):e00733. PubMed ID: 30140766 [TBL] [Abstract][Full Text] [Related]
32. Insights into nitrogen fixing traits and population structure analyses in cowpea ( Mohammed H; Jaiswal SK; Mohammed M; Mbah GC; Dakora FD Physiol Mol Biol Plants; 2020 Jun; 26(6):1263-1280. PubMed ID: 32549688 [TBL] [Abstract][Full Text] [Related]
33. Screening of cowpea (Vigna unguiculata (L.) Walp.) genotypes for waterlogging tolerance using morpho-physiological traits at early growth stage. Olorunwa OJ; Adhikari B; Shi A; Barickman TC Plant Sci; 2022 Feb; 315():111136. PubMed ID: 35067306 [TBL] [Abstract][Full Text] [Related]
34. New observations on gametogenic development and reproductive experimental tools to support seed yield improvement in cowpea [Vigna unguiculata (L.) Walp]. Salinas-Gamboa R; Johnson SD; Sánchez-León N; Koltunow AM; Vielle-Calzada JP Plant Reprod; 2016 Jun; 29(1-2):165-77. PubMed ID: 26728622 [TBL] [Abstract][Full Text] [Related]
35. Gamma Rays and Sodium Azide Induced Genetic Variability in High-Yielding and Biofortified Mutant Lines in Cowpea [ Raina A; Laskar RA; Wani MR; Jan BL; Ali S; Khan S Front Plant Sci; 2022; 13():911049. PubMed ID: 35774825 [TBL] [Abstract][Full Text] [Related]
36. Assembled genomic and tissue-specific transcriptomic data resources for two genetically distinct lines of Cowpea ( Spriggs A; Henderson ST; Hand ML; Johnson SD; Taylor JM; Koltunow A Gates Open Res; 2018; 2():7. PubMed ID: 29528046 [TBL] [Abstract][Full Text] [Related]
37. Farmers' knowledge, perception, and use of phosphorus fertilization for cowpea production in Northern Guinea Savannah of Nigeria. Mohammed SB; Mohammad IF; Pangirayi TB; Vernon G; Dzidzienyo DK; Umar ML; Umar S Heliyon; 2020 Oct; 6(10):e05207. PubMed ID: 33102841 [TBL] [Abstract][Full Text] [Related]
38. Are Portuguese Cowpea Genotypes Adapted to Drought? Phenological Development and Grain Quality Evaluation. Moreira R; Nunes C; P Pais I; Nobre Semedo J; Moreira J; Sofia Bagulho A; Pereira G; Manuela Veloso M; Scotti-Campos P Biology (Basel); 2023 Mar; 12(4):. PubMed ID: 37106708 [TBL] [Abstract][Full Text] [Related]
39. Growth and production of cowpea beans under potassium doses in soil of cerrado in Amapá, Brazil. Costa KSQ; Oliveira CF; Melo MP; Lima HC; Ferreira RLC; Melo NC; Moraes FKC; Cruz FJR; Souza LC; Nascimento VR Braz J Biol; 2023; 83():e273777. PubMed ID: 37970900 [TBL] [Abstract][Full Text] [Related]
40. Interactive Effects of Molybdenum, Zinc and Iron on the Grain Yield, Quality, and Nodulation of Cowpea ( Dhaliwal SS; Sharma V; Shukla AK; Kaur J; Verma V; Kaur M; Singh P; Brestic M; Gaber A; Hossain A Molecules; 2022 Jun; 27(11):. PubMed ID: 35684558 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]