These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35847264)

  • 1. Coal Identification Based on Reflection Spectroscopy and Deep Learning: Paving the Way for Efficient Coal Combustion and Pyrolysis.
    Xiao D; Yan Z; Li J; Fu Y; Li Z; Li B
    ACS Omega; 2022 Jul; 7(27):23919-23928. PubMed ID: 35847264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coal identification based on a deep network and reflectance spectroscopy.
    Xiao D; Le TTG; Doan TT; Le BT
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 270():120859. PubMed ID: 35033804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coal Classification Method Based on Improved Local Receptive Field-Based Extreme Learning Machine Algorithm and Visible-Infrared Spectroscopy.
    Xiao D; Li H; Sun X
    ACS Omega; 2020 Oct; 5(40):25772-25783. PubMed ID: 33073102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research on Coal Dust Wettability Identification Based on GA-BP Model.
    Zheng H; Shi S; Jiang B; Zheng Y; Li S; Wang H
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Risk Prediction of Coal and Gas Outburst in Deep Coal Mines Based on the SAPSO-ELM Algorithm.
    Yang L; Fang X; Wang X; Li S; Zhu J
    Int J Environ Res Public Health; 2022 Sep; 19(19):. PubMed ID: 36231681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid proximate analysis of coal based on reflectance spectroscopy and deep learning.
    Xiao D; Yan Z; Li J; Fu Y; Li Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 287(Pt 2):122042. PubMed ID: 36356397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coal Classification Based on Reflection Spectroscopy and the IAT-TELM Algorithm.
    Li B; Xiao D; Xie H; Huang J; Yan Z
    ACS Omega; 2023 Sep; 8(38):35232-35241. PubMed ID: 37780011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Mine Water Source Prediction Model Based on LIF Technology and BWO-ELM.
    Yan P; Li G; Wang W; Zhao Y; Wang J; Wen Z
    J Fluoresc; 2024 Jan; ():. PubMed ID: 38270796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-Line Analysis and Kinetic Behavior of Arsenic Release during Coal Combustion and Pyrolysis.
    Shen F; Liu J; Zhang Z; Dai J
    Environ Sci Technol; 2015 Nov; 49(22):13716-23. PubMed ID: 26488499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized neural network to predict the experimental minimum period of coal spontaneous combustion.
    Xiao Y; Cao Y; Zhong KQ; Yin L; Deng J
    Environ Sci Pollut Res Int; 2022 Apr; 29(19):28070-28082. PubMed ID: 34984622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Synchronous Prediction Model Based on Multi-Channel CNN with Moving Window for Coal and Electricity Consumption in Cement Calcination Process.
    Shi X; Huang G; Hao X; Yang Y; Li Z
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34201548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Vitrinite in Low-Rank Coal on the Structure and Combustion Reactivity of Pyrolysis Chars.
    Xu Y; Fu Q; Hong Y; Zhang Y; Wang L; Bei K; Chou IM; Hu H; Pan Z
    ACS Omega; 2020 Jul; 5(28):17314-17323. PubMed ID: 32715216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of mine water inrush using laser-induced fluorescence spectroscopy combined with one-dimensional convolutional neural network.
    Hu F; Zhou M; Yan P; Li D; Lai W; Bian K; Dai R
    RSC Adv; 2019 Mar; 9(14):7673-7679. PubMed ID: 35521194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved least squares SVM with adaptive PSO for the prediction of coal spontaneous combustion.
    Zhang Q; Li HG
    Math Biosci Eng; 2019 Apr; 16(4):3169-3182. PubMed ID: 31137256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new froth image classification method based on the MRMR-SSGMM hybrid model for recognition of reagent dosage condition in the coal flotation process.
    Cao W; Wang R; Fan M; Fu X; Wang H; Wang Y
    Appl Intell (Dordr); 2022; 52(1):732-752. PubMed ID: 34764598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculation and program realization of coal pillar setting parameters in Huainan mining area.
    Yang L
    PLoS One; 2024; 19(2):e0297990. PubMed ID: 38422034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the Classification Method of Rice Leaf Blast Levels Based on Fusion Features and Adaptive-Weight Immune Particle Swarm Optimization Extreme Learning Machine Algorithm.
    Zhao D; Feng S; Cao Y; Yu F; Guan Q; Li J; Zhang G; Xu T
    Front Plant Sci; 2022; 13():879668. PubMed ID: 35599890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composition of a gas and ash mixture formed during the pyrolysis and combustion of coal-water slurries containing petrochemicals.
    Dorokhov VV; Kuznetsov GV; Nyashina GS; Strizhak PA
    Environ Pollut; 2021 Sep; 285():117390. PubMed ID: 34049129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying Balls Feature in a Large-Scale Laser Point Cloud of a Coal Mining Environment by a Multiscale Dynamic Graph Convolution Neural Network.
    Xing Z; Zhao S; Guo W; Guo X; Wang Y; Bai Y; Zhu S; He H
    ACS Omega; 2022 Feb; 7(6):4892-4907. PubMed ID: 35187309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive method to prevent top-coal spontaneous combustion utilizing dry ice as a fire extinguishing medium: test apparatus development and field application.
    Qin Y; Guo W; Xu H; Song Y; Chen Y; Ma L
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):19741-19751. PubMed ID: 34719762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.