BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35847264)

  • 1. Coal Identification Based on Reflection Spectroscopy and Deep Learning: Paving the Way for Efficient Coal Combustion and Pyrolysis.
    Xiao D; Yan Z; Li J; Fu Y; Li Z; Li B
    ACS Omega; 2022 Jul; 7(27):23919-23928. PubMed ID: 35847264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coal identification based on a deep network and reflectance spectroscopy.
    Xiao D; Le TTG; Doan TT; Le BT
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 270():120859. PubMed ID: 35033804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coal Classification Method Based on Improved Local Receptive Field-Based Extreme Learning Machine Algorithm and Visible-Infrared Spectroscopy.
    Xiao D; Li H; Sun X
    ACS Omega; 2020 Oct; 5(40):25772-25783. PubMed ID: 33073102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research on Coal Dust Wettability Identification Based on GA-BP Model.
    Zheng H; Shi S; Jiang B; Zheng Y; Li S; Wang H
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Risk Prediction of Coal and Gas Outburst in Deep Coal Mines Based on the SAPSO-ELM Algorithm.
    Yang L; Fang X; Wang X; Li S; Zhu J
    Int J Environ Res Public Health; 2022 Sep; 19(19):. PubMed ID: 36231681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid proximate analysis of coal based on reflectance spectroscopy and deep learning.
    Xiao D; Yan Z; Li J; Fu Y; Li Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 287(Pt 2):122042. PubMed ID: 36356397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coal Classification Based on Reflection Spectroscopy and the IAT-TELM Algorithm.
    Li B; Xiao D; Xie H; Huang J; Yan Z
    ACS Omega; 2023 Sep; 8(38):35232-35241. PubMed ID: 37780011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Mine Water Source Prediction Model Based on LIF Technology and BWO-ELM.
    Yan P; Li G; Wang W; Zhao Y; Wang J; Wen Z
    J Fluoresc; 2024 Jan; ():. PubMed ID: 38270796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-Line Analysis and Kinetic Behavior of Arsenic Release during Coal Combustion and Pyrolysis.
    Shen F; Liu J; Zhang Z; Dai J
    Environ Sci Technol; 2015 Nov; 49(22):13716-23. PubMed ID: 26488499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized neural network to predict the experimental minimum period of coal spontaneous combustion.
    Xiao Y; Cao Y; Zhong KQ; Yin L; Deng J
    Environ Sci Pollut Res Int; 2022 Apr; 29(19):28070-28082. PubMed ID: 34984622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Synchronous Prediction Model Based on Multi-Channel CNN with Moving Window for Coal and Electricity Consumption in Cement Calcination Process.
    Shi X; Huang G; Hao X; Yang Y; Li Z
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34201548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Vitrinite in Low-Rank Coal on the Structure and Combustion Reactivity of Pyrolysis Chars.
    Xu Y; Fu Q; Hong Y; Zhang Y; Wang L; Bei K; Chou IM; Hu H; Pan Z
    ACS Omega; 2020 Jul; 5(28):17314-17323. PubMed ID: 32715216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of mine water inrush using laser-induced fluorescence spectroscopy combined with one-dimensional convolutional neural network.
    Hu F; Zhou M; Yan P; Li D; Lai W; Bian K; Dai R
    RSC Adv; 2019 Mar; 9(14):7673-7679. PubMed ID: 35521194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved least squares SVM with adaptive PSO for the prediction of coal spontaneous combustion.
    Zhang Q; Li HG
    Math Biosci Eng; 2019 Apr; 16(4):3169-3182. PubMed ID: 31137256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new froth image classification method based on the MRMR-SSGMM hybrid model for recognition of reagent dosage condition in the coal flotation process.
    Cao W; Wang R; Fan M; Fu X; Wang H; Wang Y
    Appl Intell (Dordr); 2022; 52(1):732-752. PubMed ID: 34764598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculation and program realization of coal pillar setting parameters in Huainan mining area.
    Yang L
    PLoS One; 2024; 19(2):e0297990. PubMed ID: 38422034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the Classification Method of Rice Leaf Blast Levels Based on Fusion Features and Adaptive-Weight Immune Particle Swarm Optimization Extreme Learning Machine Algorithm.
    Zhao D; Feng S; Cao Y; Yu F; Guan Q; Li J; Zhang G; Xu T
    Front Plant Sci; 2022; 13():879668. PubMed ID: 35599890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composition of a gas and ash mixture formed during the pyrolysis and combustion of coal-water slurries containing petrochemicals.
    Dorokhov VV; Kuznetsov GV; Nyashina GS; Strizhak PA
    Environ Pollut; 2021 Sep; 285():117390. PubMed ID: 34049129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying Balls Feature in a Large-Scale Laser Point Cloud of a Coal Mining Environment by a Multiscale Dynamic Graph Convolution Neural Network.
    Xing Z; Zhao S; Guo W; Guo X; Wang Y; Bai Y; Zhu S; He H
    ACS Omega; 2022 Feb; 7(6):4892-4907. PubMed ID: 35187309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive method to prevent top-coal spontaneous combustion utilizing dry ice as a fire extinguishing medium: test apparatus development and field application.
    Qin Y; Guo W; Xu H; Song Y; Chen Y; Ma L
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):19741-19751. PubMed ID: 34719762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.