These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35847453)

  • 21. Effect of workload setting on propulsion technique in handrim wheelchair propulsion.
    van Drongelen S; Arnet U; Veeger DH; van der Woude LH
    Med Eng Phys; 2013 Mar; 35(3):283-8. PubMed ID: 22910103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Is effective force application in handrim wheelchair propulsion also efficient?
    Bregman DJ; van Drongelen S; Veeger HE
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):13-9. PubMed ID: 18990473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A systematic review: the influence of real time feedback on wheelchair propulsion biomechanics.
    Symonds A; Barbareschi G; Taylor S; Holloway C
    Disabil Rehabil Assist Technol; 2018 Jan; 13(1):47-53. PubMed ID: 28102100
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A 2-D model of wheelchair propulsion.
    Morrow DA; Guo LY; Zhao KD; Su FC; An KN
    Disabil Rehabil; 2003 Feb 18-Mar 4; 25(4-5):192-6. PubMed ID: 12623626
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of seat height on manual wheelchair foot propulsion, a repeated-measures crossover study: part 2 - wheeling backward on a soft surface.
    Heinrichs ND; Kirby RL; Smith C; Russell KFJ; Theriault CJ; Doucette SP
    Disabil Rehabil Assist Technol; 2022 Apr; 17(3):325-330. PubMed ID: 32594783
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of handrim wheelchair propulsion training in adolescent wheelchair users, a pilot study.
    Dysterheft JL; Rice IM; Rice LA
    Front Bioeng Biotechnol; 2015; 3():68. PubMed ID: 26042217
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Propulsion technique and anaerobic work capacity in elite wheelchair athletes: cross-sectional analysis.
    van der Woude LH; Bakker WH; Elkhuizen JW; Veeger HE; Gwinn T
    Am J Phys Med Rehabil; 1998; 77(3):222-34. PubMed ID: 9635557
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparison of methods to compute the point of force application in handrim wheelchair propulsion: a technical note.
    Sabick MB; Zhao KD; An KN
    J Rehabil Res Dev; 2001; 38(1):57-68. PubMed ID: 11322471
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring the ecological validity and variability of a 10-min bout of wheeling.
    MacGillivray MK; Lam T; Klimstra M; Zehr EP; Sawatzky BJ
    Disabil Rehabil Assist Technol; 2018 Apr; 13(3):287-292. PubMed ID: 28485185
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of power-assisted hand-rim wheelchair propulsion on shoulder load in experienced wheelchair users: A pilot study with an instrumented wheelchair.
    Kloosterman MG; Buurke JH; de Vries W; Van der Woude LH; Rietman JS
    Med Eng Phys; 2015 Oct; 37(10):961-8. PubMed ID: 26307457
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of handrim diameter on manual wheelchair propulsion: mechanical energy and power flow analysis.
    Guo LY; Su FC; An KN
    Clin Biomech (Bristol, Avon); 2006 Feb; 21(2):107-15. PubMed ID: 16226359
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of variable practice on the motor learning outcomes in manual wheelchair propulsion.
    Leving MT; Vegter RJ; de Groot S; van der Woude LH
    J Neuroeng Rehabil; 2016 Nov; 13(1):100. PubMed ID: 27881124
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Handrim wheelchair propulsion training effect on overground propulsion using biomechanical real-time visual feedback.
    Rice IM; Pohlig RT; Gallagher JD; Boninger ML
    Arch Phys Med Rehabil; 2013 Feb; 94(2):256-63. PubMed ID: 23022092
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Training Youth With SCI to Improve Efficiency and Biomechanics of Wheelchair Propulsion: A Pilot Study.
    Schottler J; Graf A; Kelly E; Vogel L
    Top Spinal Cord Inj Rehabil; 2019; 25(2):157-163. PubMed ID: 31068747
    [No Abstract]   [Full Text] [Related]  

  • 35. Experience-Dependent Modulation of Rubber Hand Illusion in Badminton Players.
    Sakamoto M; Ifuku H
    J Sport Exerc Psychol; 2022 Feb; 44(1):14-22. PubMed ID: 34861653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Manual wheelchair pushrim biomechanics and axle position.
    Boninger ML; Baldwin M; Cooper RA; Koontz A; Chan L
    Arch Phys Med Rehabil; 2000 May; 81(5):608-13. PubMed ID: 10807100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Force application during handcycling and handrim wheelchair propulsion: an initial comparison.
    Arnet U; van Drongelen S; Veeger DH; van der Woude L HV
    J Appl Biomech; 2013 Dec; 29(6):687-95. PubMed ID: 23343659
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of synchronous versus asynchronous mode of propulsion on wheelchair basketball sprinting.
    Faupin A; Borel B; Meyer C; Gorce P; Watelain E
    Disabil Rehabil Assist Technol; 2013 Nov; 8(6):496-501. PubMed ID: 23350881
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The interaction between wheelchair configuration and wheeling performance in wheelchair tennis: a narrative review.
    Rietveld T; Vegter RJK; der Woude LHV; de Groot S
    Sports Biomech; 2024 Mar; 23(3):370-391. PubMed ID: 33433269
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of kinematics, kinetics, and EMG throughout wheelchair propulsion in able-bodied and persons with paraplegia: an integrative approach.
    Dubowsky SR; Sisto SA; Langrana NA
    J Biomech Eng; 2009 Feb; 131(2):021015. PubMed ID: 19102574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.