BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 35847909)

  • 1. The Network of Tumor Microtubes: An Improperly Reactivated Neural Cell Network With Stemness Feature for Resistance and Recurrence in Gliomas.
    Wang X; Liang J; Sun H
    Front Oncol; 2022; 12():921975. PubMed ID: 35847909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tweety-Homolog 1 Drives Brain Colonization of Gliomas.
    Jung E; Osswald M; Blaes J; Wiestler B; Sahm F; Schmenger T; Solecki G; Deumelandt K; Kurz FT; Xie R; Weil S; Heil O; Thomé C; Gömmel M; Syed M; Häring P; Huber PE; Heiland S; Platten M; von Deimling A; Wick W; Winkler F
    J Neurosci; 2017 Jul; 37(29):6837-6850. PubMed ID: 28607172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A malignant cellular network in gliomas: potential clinical implications.
    Osswald M; Solecki G; Wick W; Winkler F
    Neuro Oncol; 2016 Apr; 18(4):479-85. PubMed ID: 26995789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor microtubes convey resistance to surgical lesions and chemotherapy in gliomas.
    Weil S; Osswald M; Solecki G; Grosch J; Jung E; Lemke D; Ratliff M; Hänggi D; Wick W; Winkler F
    Neuro Oncol; 2017 Oct; 19(10):1316-1326. PubMed ID: 28419303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor cell network integration in glioma represents a stemness feature.
    Xie R; Kessler T; Grosch J; Hai L; Venkataramani V; Huang L; Hoffmann DC; Solecki G; Ratliff M; Schlesner M; Wick W; Winkler F
    Neuro Oncol; 2021 May; 23(5):757-769. PubMed ID: 33320195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sox2, a stemness gene, regulates tumor-initiating and drug-resistant properties in CD133-positive glioblastoma stem cells.
    Song WS; Yang YP; Huang CS; Lu KH; Liu WH; Wu WW; Lee YY; Lo WL; Lee SD; Chen YW; Huang PI; Chen MT
    J Chin Med Assoc; 2016 Oct; 79(10):538-45. PubMed ID: 27530866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Cancer Neuroscience].
    Venkataramani V; Winkler F
    Nervenarzt; 2022 Oct; 93(10):977-986. PubMed ID: 36129477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunneling Nanotubes and Tumor Microtubes in Cancer.
    Roehlecke C; Schmidt MHH
    Cancers (Basel); 2020 Apr; 12(4):. PubMed ID: 32244839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rediscovering Potential Molecular Targets for Glioma Therapy Through the Analysis of the Cell of Origin, Microenvironment and Metabolism.
    Guo X; Wang T; Huang G; Li R; Da Costa C; Li H; Lv S; Li N
    Curr Cancer Drug Targets; 2021; 21(7):558-574. PubMed ID: 33949933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role and mechanism of neural stem cells of the subventricular zone in glioblastoma.
    Zhang GL; Wang CF; Qian C; Ji YX; Wang YZ
    World J Stem Cells; 2021 Jul; 13(7):877-893. PubMed ID: 34367482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncovering Spatiotemporal Heterogeneity of High-Grade Gliomas: From Disease Biology to Therapeutic Implications.
    Comba A; Faisal SM; Varela ML; Hollon T; Al-Holou WN; Umemura Y; Nunez FJ; Motsch S; Castro MG; Lowenstein PR
    Front Oncol; 2021; 11():703764. PubMed ID: 34422657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glioma Cells in the Tumor Periphery Have a Stem Cell Phenotype.
    Munthe S; Petterson SA; Dahlrot RH; Poulsen FR; Hansen S; Kristensen BW
    PLoS One; 2016; 11(5):e0155106. PubMed ID: 27171431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting cancer stem cells through L1CAM suppresses glioma growth.
    Bao S; Wu Q; Li Z; Sathornsumetee S; Wang H; McLendon RE; Hjelmeland AB; Rich JN
    Cancer Res; 2008 Aug; 68(15):6043-8. PubMed ID: 18676824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging Tunneling Membrane Tubes Elucidates Cell Communication in Tumors.
    Lou E; Gholami S; Romin Y; Thayanithy V; Fujisawa S; Desir S; Steer CJ; Subramanian S; Fong Y; Manova-Todorova K; Moore MAS
    Trends Cancer; 2017 Oct; 3(10):678-685. PubMed ID: 28958386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor cell plasticity, heterogeneity, and resistance in crucial microenvironmental niches in glioma.
    Jung E; Osswald M; Ratliff M; Dogan H; Xie R; Weil S; Hoffmann DC; Kurz FT; Kessler T; Heiland S; von Deimling A; Sahm F; Wick W; Winkler F
    Nat Commun; 2021 Feb; 12(1):1014. PubMed ID: 33579922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motility of glioblastoma cells is driven by netrin-1 induced gain of stemness.
    Ylivinkka I; Sihto H; Tynninen O; Hu Y; Laakso A; Kivisaari R; Laakkonen P; Keski-Oja J; Hyytiäinen M
    J Exp Clin Cancer Res; 2017 Jan; 36(1):9. PubMed ID: 28069038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glioma Stem Cells-Features for New Therapy Design.
    Pećina-Šlaus N; Hrašćan R
    Cancers (Basel); 2024 Apr; 16(8):. PubMed ID: 38672638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intercellular Conduits in Tumors: The New Social Network.
    Lou E
    Trends Cancer; 2016 Jan; 2(1):3-5. PubMed ID: 28741498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intratumor heterogeneity, microenvironment, and mechanisms of drug resistance in glioma recurrence and evolution.
    Bao Z; Wang Y; Wang Q; Fang S; Shan X; Wang J; Jiang T
    Front Med; 2021 Aug; 15(4):551-561. PubMed ID: 33893983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemokine CXC receptor 4--mediated glioma tumor tracking by bone marrow--derived neural progenitor/stem cells.
    Xu Q; Yuan X; Xu M; McLafferty F; Hu J; Lee BS; Liu G; Zeng Z; Black KL; Yu JS
    Mol Cancer Ther; 2009 Sep; 8(9):2746-53. PubMed ID: 19723878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.