BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35848044)

  • 1. The assessment of biceps voluntary activation with transcranial magnetic stimulation in individuals with tetraplegia.
    Roumengous T; Peterson CL
    Restor Neurol Neurosci; 2022; 40(3):169-184. PubMed ID: 35848044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paired pulse transcranial magnetic stimulation in the assessment of biceps voluntary activation in individuals with tetraplegia.
    Roumengous T; Thakkar B; Peterson CL
    Front Hum Neurosci; 2022; 16():976014. PubMed ID: 36405076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct Corticospinal and Reticulospinal Contributions to Voluntary Control of Elbow Flexor and Extensor Muscles in Humans with Tetraplegia.
    Sangari S; Perez MA
    J Neurosci; 2020 Nov; 40(46):8831-8841. PubMed ID: 32883710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Posture-Dependent Corticomotor Excitability Differs Between the Transferred Biceps in Individuals With Tetraplegia and the Biceps of Nonimpaired Individuals.
    Peterson CL; Rogers LM; Bednar MS; Bryden AM; Keith MW; Perreault EJ; Murray WM
    Neurorehabil Neural Repair; 2017 Apr; 31(4):354-363. PubMed ID: 27932695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elbow angle modulates corticospinal excitability to the resting biceps brachii at both spinal and supraspinal levels.
    Dongés SC; Taylor JL; Nuzzo JL
    Exp Physiol; 2019 Apr; 104(4):546-555. PubMed ID: 30690803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corticospinal excitability of the biceps brachii is shoulder position dependent.
    Collins BW; Cadigan EWJ; Stefanelli L; Button DC
    J Neurophysiol; 2017 Dec; 118(6):3242-3251. PubMed ID: 28855295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maximal Voluntary Activation of the Elbow Flexors Is under Predicted by Transcranial Magnetic Stimulation Compared to Motor Point Stimulation Prior to and Following Muscle Fatigue.
    Cadigan EWJ; Collins BW; Philpott DTG; Kippenhuck G; Brenton M; Button DC
    Front Physiol; 2017; 8():707. PubMed ID: 28979211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermittent theta burst stimulation modulates biceps brachii corticomotor excitability in individuals with tetraplegia.
    Mittal N; Majdic BC; Peterson CL
    J Neuroeng Rehabil; 2022 Jul; 19(1):73. PubMed ID: 35843943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle length and joint angle influence spinal but not corticospinal excitability to the biceps brachii across forearm postures.
    Forman DA; Abdel-Malek D; Bunce CMF; Holmes MWR
    J Neurophysiol; 2019 Jul; 122(1):413-423. PubMed ID: 31116661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voluntary activation does not differ when using two different methods to determine transcranial magnetic stimulator output.
    Bruce CD; Magnuson JR; McNeil CJ
    J Neurophysiol; 2023 Oct; 130(4):925-930. PubMed ID: 37671448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in supraspinal and spinal excitability during various force outputs of the biceps brachii in chronic- and non-resistance trained individuals.
    Pearcey GE; Power KE; Button DC
    PLoS One; 2014; 9(5):e98468. PubMed ID: 24875495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability.
    Abdelmoula A; Baudry S; Duchateau J
    Neuroscience; 2016 May; 322():94-103. PubMed ID: 26892298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcranial magnetic stimulation intensity affects exercise-induced changes in corticomotoneuronal excitability and inhibition and voluntary activation.
    Bachasson D; Temesi J; Gruet M; Yokoyama K; Rupp T; Millet GY; Verges S
    Neuroscience; 2016 Feb; 314():125-33. PubMed ID: 26642805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cadence-dependent changes in corticospinal excitability of the biceps brachii during arm cycling.
    Forman DA; Philpott DT; Button DC; Power KE
    J Neurophysiol; 2015 Oct; 114(4):2285-94. PubMed ID: 26289462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Posture-dependent changes in corticomotor excitability of the biceps after spinal cord injury and tendon transfer.
    Peterson CL; Rogers LM; Mogk JP; Bednar MS; Bryden AM; Keith MW; Perreault EJ; Murray WM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4302-5. PubMed ID: 25570944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. People with multiple sclerosis have reduced TMS-evoked motor cortical output compared with healthy individuals during fatiguing submaximal contractions.
    Brotherton EJ; Sabapathy S; Mckeown DJ; Kavanagh JJ
    J Neurophysiol; 2022 Jul; 128(1):105-117. PubMed ID: 35675447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of shoulder position on motor evoked and maximal muscle compound action potentials of the biceps brachii.
    Collins BW; Button DC
    Neurosci Lett; 2018 Feb; 665():206-211. PubMed ID: 29229395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanomyographic response to transcranial magnetic stimulation from biceps brachii and during transcutaneous electrical nerve stimulation on extensor carpi radialis.
    Reza MF; Ikoma K; Chuma T; Mano Y
    J Neurosci Methods; 2005 Dec; 149(2):164-71. PubMed ID: 16026847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in motoneuron excitability during voluntary muscle activity in humans with spinal cord injury.
    Vastano R; Perez MA
    J Neurophysiol; 2020 Feb; 123(2):454-461. PubMed ID: 31461361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partial weight support of the arm affects corticomotor selectivity of biceps brachii.
    Runnalls KD; Anson G; Byblow WD
    J Neuroeng Rehabil; 2015 Oct; 12():94. PubMed ID: 26502933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.