These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35848189)

  • 1. [Advances of the role of mitochondrial dysfunction in the spinal cord injury and its relevant treatments].
    Miao X; Lin J; Zheng X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2022 Jul; 36(7):902-907. PubMed ID: 35848189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FDA-approved 5-HT
    Simmons EC; Scholpa NE; Schnellmann RG
    Exp Neurol; 2021 Jul; 341():113720. PubMed ID: 33848513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial-Based Therapeutics for the Treatment of Spinal Cord Injury: Mitochondrial Biogenesis as a Potential Pharmacological Target.
    Scholpa NE; Schnellmann RG
    J Pharmacol Exp Ther; 2017 Dec; 363(3):303-313. PubMed ID: 28935700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal characterization of mitochondrial bioenergetics after spinal cord injury.
    Sullivan PG; Krishnamurthy S; Patel SP; Pandya JD; Rabchevsky AG
    J Neurotrauma; 2007 Jun; 24(6):991-9. PubMed ID: 17600515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuroprotective effects of lycopene in spinal cord injury in rats via antioxidative and anti-apoptotic pathway.
    Hu W; Wang H; Liu Z; Liu Y; Wang R; Luo X; Huang Y
    Neurosci Lett; 2017 Mar; 642():107-112. PubMed ID: 28163080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-to-treatment window and cross-sex potential of β
    Scholpa NE; Simmons EC; Crossman JD; Schnellmann RG
    Toxicol Appl Pharmacol; 2021 Jan; 411():115366. PubMed ID: 33316273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticles with antioxidant enzymes protect injured spinal cord from neuronal cell apoptosis by attenuating mitochondrial dysfunction.
    Andrabi SS; Yang J; Gao Y; Kuang Y; Labhasetwar V
    J Control Release; 2020 Jan; 317():300-311. PubMed ID: 31805339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Necrostatin-1 mitigates mitochondrial dysfunction post-spinal cord injury.
    Wang Y; Wang J; Yang H; Zhou J; Feng X; Wang H; Tao Y
    Neuroscience; 2015 Mar; 289():224-32. PubMed ID: 25595990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ebselen protects mitochondrial function and oxidative stress while inhibiting the mitochondrial apoptosis pathway after acute spinal cord injury.
    Jia ZQ; Li SQ; Qiao WQ; Xu WZ; Xing JW; Liu JT; Song H; Gao ZY; Xing BW; He XJ
    Neurosci Lett; 2018 Jun; 678():110-117. PubMed ID: 29733976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. β
    Scholpa NE; Simmons EC; Tilley DG; Schnellmann RG
    Exp Neurol; 2019 Dec; 322():113064. PubMed ID: 31525347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vanillin ameliorates changes in HIF-1α expression and neuronal apoptosis in a rat model of spinal cord injury.
    Chen H; Zheng J; Ma J
    Restor Neurol Neurosci; 2019; 37(1):21-29. PubMed ID: 30741707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhalation of Hydrogen of Different Concentrations Ameliorates Spinal Cord Injury in Mice by Protecting Spinal Cord Neurons from Apoptosis, Oxidative Injury and Mitochondrial Structure Damages.
    Chen X; Cui J; Zhai X; Zhang J; Gu Z; Zhi X; Weng W; Pan P; Cao L; Ji F; Wang Z; Su J
    Cell Physiol Biochem; 2018; 47(1):176-190. PubMed ID: 29763919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute spinal cord injury is associated with mitochondrial dysfunction in mouse urothelium.
    Kullmann AF; Truschel ST; Wolf-Johnston AS; McDonnell BM; Lynn AM; Kanai AJ; Kessler TM; Apodaca G; Birder LA
    Neurourol Urodyn; 2019 Aug; 38(6):1551-1559. PubMed ID: 31102563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological evidence for a role of peroxynitrite in the pathophysiology of spinal cord injury.
    Xiong Y; Hall ED
    Exp Neurol; 2009 Mar; 216(1):105-14. PubMed ID: 19111721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zinc Regulates Glucose Metabolism of the Spinal Cord and Neurons and Promotes Functional Recovery after Spinal Cord Injury through the AMPK Signaling Pathway.
    Hu H; Xia N; Lin J; Li D; Zhang C; Ge M; Tian H; Mei X
    Oxid Med Cell Longev; 2021; 2021():4331625. PubMed ID: 34373765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacological Stimulation of Mitochondrial Biogenesis Using the Food and Drug Administration-Approved β
    Scholpa NE; Williams H; Wang W; Corum D; Narang A; Tomlinson S; Sullivan PG; Rabchevsky AG; Schnellmann RG
    J Neurotrauma; 2019 Mar; 36(6):962-972. PubMed ID: 30280980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial-targeting antioxidant MitoQ modulates angiogenesis and promotes functional recovery after spinal cord injury.
    Huang T; Shen J; Bao B; Hu W; Sun Y; Zhu T; Lin J; Gao T; Li X; Zheng X
    Brain Res; 2022 Jul; 1786():147902. PubMed ID: 35381215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination therapy with astaxanthin and epidermal neural crest stem cells improves motor impairments and activates mitochondrial biogenesis in a rat model of spinal cord injury.
    Mohaghegh Shalmani L; Valian N; Pournajaf S; Abbaszadeh F; Dargahi L; Jorjani M
    Mitochondrion; 2020 May; 52():125-134. PubMed ID: 32151747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nrf2 Signaling in the Oxidative Stress Response After Spinal Cord Injury.
    Guo X; Kang J; Wang Z; Wang Y; Liu M; Zhu D; Yang F; Kang X
    Neuroscience; 2022 Aug; 498():311-324. PubMed ID: 35710066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial function in spinal cord injury and regeneration.
    Slater PG; Domínguez-Romero ME; Villarreal M; Eisner V; Larraín J
    Cell Mol Life Sci; 2022 Apr; 79(5):239. PubMed ID: 35416520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.