These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 35848398)
1. Generation and Disruption of Circadian Rhythms in the Suprachiasmatic Nucleus: A Core-Shell Model. Goltsev AV; Wright EAP; Mendes JFF; Yoon S J Biol Rhythms; 2022 Oct; 37(5):545-561. PubMed ID: 35848398 [TBL] [Abstract][Full Text] [Related]
2. Nonphotic entrainment of central and peripheral circadian clocks in mice by scheduled voluntary exercise under constant darkness. Sato RY; Yamanaka Y Am J Physiol Regul Integr Comp Physiol; 2023 Apr; 324(4):R526-R535. PubMed ID: 36802951 [TBL] [Abstract][Full Text] [Related]
4. Food anticipatory circadian rhythms in mice entrained to long or short day photoperiods. Power SC; Mistlberger RE Physiol Behav; 2020 Aug; 222():112939. PubMed ID: 32407832 [TBL] [Abstract][Full Text] [Related]
5. Wheel-running activity rhythms and masking responses in the diurnal palm squirrel, Kumar D; Soni SK; Kronfeld-Schor N; Singaravel M Chronobiol Int; 2020 Dec; 37(12):1693-1708. PubMed ID: 33044096 [TBL] [Abstract][Full Text] [Related]
7. Social interaction masking contributes to changes in the activity of the suprachiasmatic nucleus and impacts on circadian rhythms. Fernandes P; Pereira LM; Horta NAC; Cardoso TSR; Coimbra CC; Szawka RE; Pereira GS; Poletini MO Physiol Behav; 2021 Aug; 237():113420. PubMed ID: 33878315 [TBL] [Abstract][Full Text] [Related]
8. Role of suprachiasmatic nuclei in circadian and light-entrained behavioral rhythms of lizards. Bertolucci C; Sovrano VA; Magnone MC; Foà A Am J Physiol Regul Integr Comp Physiol; 2000 Dec; 279(6):R2121-31. PubMed ID: 11080077 [TBL] [Abstract][Full Text] [Related]
9. Expression profiles of PER2 immunoreactivity within the shell and core regions of the rat suprachiasmatic nucleus: lack of effect of photic entrainment and disruption by constant light. Beaulé C; Houle LM; Amir S J Mol Neurosci; 2003; 21(2):133-47. PubMed ID: 14593213 [TBL] [Abstract][Full Text] [Related]
10. The Excitatory Effects of GABA within the Suprachiasmatic Nucleus: Regulation of Na-K-2Cl Cotransporters (NKCCs) by Environmental Lighting Conditions. McNeill JK; Walton JC; Ryu V; Albers HE J Biol Rhythms; 2020 Jun; 35(3):275-286. PubMed ID: 32406304 [TBL] [Abstract][Full Text] [Related]
11. Constant light during lactation programs circadian and metabolic systems. Madahi PG; Ivan O; Adriana B; Diana O; Carolina E Chronobiol Int; 2018 Aug; 35(8):1153-1167. PubMed ID: 29688088 [TBL] [Abstract][Full Text] [Related]
12. Enhanced phase resetting in the synchronized suprachiasmatic nucleus network. Ramkisoensing A; Gu C; van Engeldorp Gastelaars HM; Michel S; Deboer T; Rohling JH; Meijer JH J Biol Rhythms; 2014 Feb; 29(1):4-15. PubMed ID: 24492878 [TBL] [Abstract][Full Text] [Related]
13. Circadian entrainment aftereffects in suprachiasmatic nuclei and peripheral tissues in vitro. Molyneux PC; Dahlgren MK; Harrington ME Brain Res; 2008 Sep; 1228():127-34. PubMed ID: 18598681 [TBL] [Abstract][Full Text] [Related]
14. A multicellular model for differential regulation of circadian signals in the core and shell regions of the suprachiasmatic nucleus. Vasalou C; Henson MA J Theor Biol; 2011 Nov; 288():44-56. PubMed ID: 21871462 [TBL] [Abstract][Full Text] [Related]
15. Coupling Between Subregional Oscillators Within the Suprachiasmatic Nucleus Determines Free-Running Period in the Rat. Schwartz MD; Cambras T; Díez-Noguera A; Campuzano A; Oda GA; Yamazaki S; de la Iglesia HO J Biol Rhythms; 2022 Dec; 37(6):620-630. PubMed ID: 36181312 [TBL] [Abstract][Full Text] [Related]
16. The proportion of light-responsive neurons determines the limit cycle properties of the suprachiasmatic nucleus. Gu C; Ramkisoensing A; Liu Z; Meijer JH; Rohling JH J Biol Rhythms; 2014 Feb; 29(1):16-27. PubMed ID: 24492879 [TBL] [Abstract][Full Text] [Related]
17. Long-term constant light induces constitutive elevated expression of mPER2 protein in the murine SCN: a molecular basis for Aschoff's rule? Muñoz M; Peirson SN; Hankins MW; Foster RG J Biol Rhythms; 2005 Feb; 20(1):3-14. PubMed ID: 15654066 [TBL] [Abstract][Full Text] [Related]
18. Chronic exposure to dim artificial light disrupts the daily rhythm in mitochondrial respiration in mouse suprachiasmatic nucleus. Rajput P; Kumar D; Krishnamurthy S Chronobiol Int; 2023 Jul; 40(7):938-951. PubMed ID: 37483020 [TBL] [Abstract][Full Text] [Related]
19. The light-dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock. Husse J; Leliavski A; Tsang AH; Oster H; Eichele G FASEB J; 2014 Nov; 28(11):4950-60. PubMed ID: 25063847 [TBL] [Abstract][Full Text] [Related]
20. A neural theory of circadian rhythms: Aschoff's rule in diurnal and nocturnal mammals. Carpenter GA; Grossberg S Am J Physiol; 1984 Dec; 247(6 Pt 2):R1067-82. PubMed ID: 6542316 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]