These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35848767)

  • 41. Stratospheric aerosol lidar with a 300 µm diameter superconducting nanowire single-photon detector at 1064 nm.
    Li M; Wu Y; Yuan J; Zhao L; Tang D; Dong J; Xia H; Dou X
    Opt Express; 2023 Jan; 31(2):2768-2779. PubMed ID: 36785283
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photon counting LIDAR at 2.3µm wavelength with superconducting nanowires.
    Taylor GG; Morozov D; Gemmell NR; Erotokritou K; Miki S; Terai H; Hadfield RH
    Opt Express; 2019 Dec; 27(26):38147-38158. PubMed ID: 31878586
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films.
    Verma VB; Korzh B; Bussières F; Horansky RD; Dyer SD; Lita AE; Vayshenker I; Marsili F; Shaw MD; Zbinden H; Mirin RP; Nam SW
    Opt Express; 2015 Dec; 23(26):33792-801. PubMed ID: 26832040
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fluorescence correlation spectroscopy with visible-wavelength superconducting nanowire single-photon detector.
    Yamashita T; Liu D; Miki S; Yamamoto J; Haraguchi T; Kinjo M; Hiraoka Y; Wang Z; Terai H
    Opt Express; 2014 Nov; 22(23):28783-9. PubMed ID: 25402117
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Superconducting nanowire single-photon detector with 3D-printed free-form microlenses.
    Xu Y; Kuzmin A; Knehr E; Blaicher M; Ilin K; Dietrich PI; Freude W; Siegel M; Koos C
    Opt Express; 2021 Aug; 29(17):27708-27731. PubMed ID: 34615182
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Superconducting nanowire single-photon sensing of cerebral blood flow.
    Ozana N; Zavriyev AI; Mazumder D; Robinson M; Kaya K; Blackwell M; Carp SA; Franceschini MA
    Neurophotonics; 2021 Jul; 8(3):035006. PubMed ID: 34423069
    [No Abstract]   [Full Text] [Related]  

  • 47. Fast and accurate measurement of the polarization-dependent detection efficiency of superconducting nanowire single photon detectors.
    Fei Y; Ji T; Zhang L; Zhu G; Tan J; Lv J; Chen Q; He G; Li F; Wang X; Li H; Guan Y; Yin R; Wang H; Jia X; Zhao Q; Tu X; Kang L; Chen J; Wu P
    Opt Express; 2022 Sep; 30(20):36456-36463. PubMed ID: 36258573
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Superconducting nanowire single-photon detectors integrated with tantalum pentoxide waveguides.
    Wolff MA; Vogel S; Splitthoff L; Schuck C
    Sci Rep; 2020 Oct; 10(1):17170. PubMed ID: 33051576
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Superconducting nanowire single photon detection system for space applications.
    You L; Quan J; Wang Y; Ma Y; Yang X; Liu Y; Li H; Li J; Wang J; Liang J; Wang Z; Xie X
    Opt Express; 2018 Feb; 26(3):2965-2971. PubMed ID: 29401829
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Waveguide-coupled superconducting nanowire single-photon detectors based on femtosecond laser direct writing.
    Hou X; Xu XY; Xu G; You L; Jin XM; Li H; Zhang W; Ren RJ; Huang XL; Wang Z
    Opt Express; 2021 Mar; 29(5):7746-7756. PubMed ID: 33726270
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared.
    Le Jeannic H; Verma VB; Cavaillès A; Marsili F; Shaw MD; Huang K; Morin O; Nam SW; Laurat J
    Opt Lett; 2016 Nov; 41(22):5341-5344. PubMed ID: 27842128
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multiexciton dynamics in infrared-emitting colloidal nanostructures probed by a superconducting nanowire single-photon detector.
    Sandberg RL; Padilha LA; Qazilbash MM; Bae WK; Schaller RD; Pietryga JM; Stevens MJ; Baek B; Nam SW; Klimov VI
    ACS Nano; 2012 Nov; 6(11):9532-40. PubMed ID: 23020520
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interstitial null-distance time-domain diffuse optical spectroscopy using a superconducting nanowire detector.
    Damagatla V; Lanka P; Brodu A; Noordzij N; Qin-Dregely J; Farina A; Pifferi A
    J Biomed Opt; 2023 Dec; 28(12):121202. PubMed ID: 37021124
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vivo non-invasive confocal fluorescence imaging beyond 1,700 nm using superconducting nanowire single-photon detectors.
    Wang F; Ren F; Ma Z; Qu L; Gourgues R; Xu C; Baghdasaryan A; Li J; Zadeh IE; Los JWN; Fognini A; Qin-Dregely J; Dai H
    Nat Nanotechnol; 2022 Jun; 17(6):653-660. PubMed ID: 35606441
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution.
    Chen L; Schwarzer D; Lau JA; Verma VB; Stevens MJ; Marsili F; Mirin RP; Nam SW; Wodtke AM
    Opt Express; 2018 Jun; 26(12):14859-14868. PubMed ID: 30114791
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modified detector tomography technique applied to a superconducting multiphoton nanodetector.
    Renema JJ; Frucci G; Zhou Z; Mattioli F; Gaggero A; Leoni R; de Dood MJ; Fiore A; van Exter MP
    Opt Express; 2012 Jan; 20(3):2806-13. PubMed ID: 22330516
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterize the switching performance of a superconducting nanowire cryotron for reading superconducting nanowire single photon detectors.
    Zheng K; Zhao QY; Kong LD; Chen S; Lu HY; Tu XC; Zhang LB; Jia XQ; Chen J; Kang L; Wu PH
    Sci Rep; 2019 Nov; 9(1):16345. PubMed ID: 31705023
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantum detector tomography of a time-multiplexed superconducting nanowire single-photon detector at telecom wavelengths.
    Natarajan CM; Zhang L; Coldenstrodt-Ronge H; Donati G; Dorenbos SN; Zwiller V; Walmsley IA; Hadfield RH
    Opt Express; 2013 Jan; 21(1):893-902. PubMed ID: 23388983
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reducing g
    Sempere-Llagostera S; Thekkadath GS; Patel RB; Kolthammer WS; Walmsley IA
    Opt Express; 2022 Jan; 30(2):3138-3147. PubMed ID: 35209439
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Counting near-infrared single-photons with 95% efficiency.
    Lita AE; Miller AJ; Nam SW
    Opt Express; 2008 Mar; 16(5):3032-40. PubMed ID: 18542389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.