These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35848817)

  • 1. Potential of bacteriophage proteins as recognition molecules for pathogen detection.
    Costa SP; Nogueira CL; Cunha AP; Lisac A; Carvalho CM
    Crit Rev Biotechnol; 2023 Dec; 43(5):787-804. PubMed ID: 35848817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacteriophage-based advanced bacterial detection: Concept, mechanisms, and applications.
    Hussain W; Ullah MW; Farooq U; Aziz A; Wang S
    Biosens Bioelectron; 2021 Apr; 177():112973. PubMed ID: 33429203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of bacteriophages for detection of foodborne pathogens.
    Schmelcher M; Loessner MJ
    Bacteriophage; 2014 Jan; 4(1):e28137. PubMed ID: 24533229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacteriophage-receptor binding proteins for multiplex detection of Staphylococcus and Enterococcus in blood.
    Santos SB; Cunha AP; Macedo M; Nogueira CL; Brandão A; Costa SP; Melo LDR; Azeredo J; Carvalho CM
    Biotechnol Bioeng; 2020 Nov; 117(11):3286-3298. PubMed ID: 32658303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacteriophage-Based Biosensors: A Platform for Detection of Foodborne Bacterial Pathogens from Food and Environment.
    Al-Hindi RR; Teklemariam AD; Alharbi MG; Alotibi I; Azhari SA; Qadri I; Alamri T; Harakeh S; Applegate BM; Bhunia AK
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36291042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in bacteriophage based biosensors for food-borne pathogen detection.
    Singh A; Poshtiban S; Evoy S
    Sensors (Basel); 2013 Jan; 13(2):1763-86. PubMed ID: 23364199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and multiplex detection of nosocomial pathogens on a phage-based magnetoresistive lab-on-chip platform.
    Cunha AP; Henriques R; Cardoso S; Freitas PP; Carvalho CM
    Biotechnol Bioeng; 2021 Aug; 118(8):3164-3174. PubMed ID: 34037981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacteriophage based probes for pathogen detection.
    Singh A; Arutyunov D; Szymanski CM; Evoy S
    Analyst; 2012 Aug; 137(15):3405-21. PubMed ID: 22724121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploitation of a
    Nogueira CL; Pires DP; Monteiro R; Santos SB; Carvalho CM
    ACS Infect Dis; 2021 Nov; 7(11):3077-3087. PubMed ID: 34618422
    [No Abstract]   [Full Text] [Related]  

  • 10. Lateral flow assay-based bacterial detection using engineered cell wall binding domains of a phage endolysin.
    Kong M; Shin JH; Heu S; Park JK; Ryu S
    Biosens Bioelectron; 2017 Oct; 96():173-177. PubMed ID: 28494369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates.
    Loessner MJ; Kramer K; Ebel F; Scherer S
    Mol Microbiol; 2002 Apr; 44(2):335-49. PubMed ID: 11972774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Domain shuffling and module engineering of Listeria phage endolysins for enhanced lytic activity and binding affinity.
    Schmelcher M; Tchang VS; Loessner MJ
    Microb Biotechnol; 2011 Sep; 4(5):651-62. PubMed ID: 21535426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From Bits and Pieces to Whole Phage to Nanomachines: Pathogen Detection Using Bacteriophages.
    Anany H; Chou Y; Cucic S; Derda R; Evoy S; Griffiths MW
    Annu Rev Food Sci Technol; 2017 Feb; 8():305-329. PubMed ID: 28125341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid multiplex detection and differentiation of Listeria cells by use of fluorescent phage endolysin cell wall binding domains.
    Schmelcher M; Shabarova T; Eugster MR; Eichenseher F; Tchang VS; Banz M; Loessner MJ
    Appl Environ Microbiol; 2010 Sep; 76(17):5745-56. PubMed ID: 20622130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lytic phage as a specific and selective probe for detection of Staphylococcus aureus--A surface plasmon resonance spectroscopic study.
    Balasubramanian S; Sorokulova IB; Vodyanoy VJ; Simonian AL
    Biosens Bioelectron; 2007 Jan; 22(6):948-55. PubMed ID: 16697635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacteriophages and phage-derived proteins--application approaches.
    Drulis-Kawa Z; Majkowska-Skrobek G; Maciejewska B
    Curr Med Chem; 2015; 22(14):1757-73. PubMed ID: 25666799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A perfect fit: Bacteriophage receptor-binding proteins for diagnostic and therapeutic applications.
    Klumpp J; Dunne M; Loessner MJ
    Curr Opin Microbiol; 2023 Feb; 71():102240. PubMed ID: 36446275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single thiolated-phage displayed nanobody-based biosensor for label-free detection of foodborne pathogen.
    Wang P; Yu G; Wei J; Liao X; Zhang Y; Ren Y; Zhang C; Wang Y; Zhang D; Wang J; Wang Y
    J Hazard Mater; 2023 Feb; 443(Pt A):130157. PubMed ID: 36265374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The State of the Art in Biodefense Related Bacterial Pathogen Detection Using Bacteriophages: How It Started and How It's Going.
    Sozhamannan S; Hofmann ER
    Viruses; 2020 Dec; 12(12):. PubMed ID: 33291831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence-Function Relationships in Phage-Encoded Bacterial Cell Wall Lytic Enzymes and Their Implications for Phage-Derived Product Design.
    Vázquez R; García E; García P
    J Virol; 2021 Jun; 95(14):e0032121. PubMed ID: 33883227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.