BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35848917)

  • 1. Correlation filters tissue tracking with application to robotic minimally invasive surgery.
    Sun Y; Pan B; Fu Y
    Int J Med Robot; 2022 Dec; 18(6):e2440. PubMed ID: 35848917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long Term Safety Area Tracking (LT-SAT) with online failure detection and recovery for robotic minimally invasive surgery.
    Penza V; Du X; Stoyanov D; Forgione A; Mattos LS; De Momi E
    Med Image Anal; 2018 Apr; 45():13-23. PubMed ID: 29329053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A probabilistic framework for tracking deformable soft tissue in minimally invasive surgery.
    Mountney P; Lo B; Thiemjarus S; Stoyanov D; Zhong-Yang G
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):34-41. PubMed ID: 18044550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined 2D and 3D tracking of surgical instruments for minimally invasive and robotic-assisted surgery.
    Du X; Allan M; Dore A; Ourselin S; Hawkes D; Kelly JD; Stoyanov D
    Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):1109-19. PubMed ID: 27038963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft tissue deformation tracking for robotic assisted minimally invasive surgery.
    Stoyanov D; Yang GZ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():254-7. PubMed ID: 19964473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patch-based adaptive weighting with segmentation and scale (PAWSS) for visual tracking in surgical video.
    Du X; Allan M; Bodenstedt S; Maier-Hein L; Speidel S; Dore A; Stoyanov D
    Med Image Anal; 2019 Oct; 57():120-135. PubMed ID: 31299494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soft tissue tracking for minimally invasive surgery: learning local deformation online.
    Mountney P; Yang GZ
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):364-72. PubMed ID: 18982626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vision-based hand-eye calibration for robot-assisted minimally invasive surgery.
    Sun Y; Pan B; Guo Y; Fu Y; Niu G
    Int J Comput Assist Radiol Surg; 2020 Dec; 15(12):2061-2069. PubMed ID: 32808149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FRSR: Framework for real-time scene reconstruction in robot-assisted minimally invasive surgery.
    Chen Z; Marzullo A; Alberti D; Lievore E; Fontana M; De Cobelli O; Musi G; Ferrigno G; De Momi E
    Comput Biol Med; 2023 Sep; 163():107121. PubMed ID: 37311383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Operative time and learning curve between fluoroscopy-based instrument tracking and robot-assisted instrumentation for patients undergoing minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF).
    Wang TY; Mehta VA; Sankey EW; Lavoie S; Abd-El-Barr MM; Yarbrough CK
    Clin Neurol Neurosurg; 2021 Jul; 206():106698. PubMed ID: 34030076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gaze-contingent soft tissue deformation tracking for minimally invasive robotic surgery.
    Mylonas GP; Stoyanov D; Deligianni F; Darzi A; Yang GZ
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):843-50. PubMed ID: 16685925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laparoscope self-calibration for robotic assisted minimally invasive surgery.
    Stoyanov D; Darzi A; Yang GZ
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):114-21. PubMed ID: 16685950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Automated Skill Assessment Framework Based on Visual Motion Signals and a Deep Neural Network in Robot-Assisted Minimally Invasive Surgery.
    Pan M; Wang S; Li J; Li J; Yang X; Liang K
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endoscopic vision-based tracking of multiple surgical instruments during robot-assisted surgery.
    Ryu J; Choi J; Kim HC
    Artif Organs; 2013 Jan; 37(1):107-12. PubMed ID: 23043484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and evaluation of hand-eye coordination of surgical robotic system on task performance.
    Gao Y; Wang S; Li J; Li A; Liu H; Xing Y
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28471060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gaze-contingent control for minimally invasive robotic surgery.
    Mylonas GP; Darzi A; Yang GZ
    Comput Aided Surg; 2006 Sep; 11(5):256-66. PubMed ID: 17127651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmented Reality (AR) for Surgical Robotic and Autonomous Systems: State of the Art, Challenges, and Solutions.
    Seetohul J; Shafiee M; Sirlantzis K
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37448050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SLAM-based dense surface reconstruction in monocular Minimally Invasive Surgery and its application to Augmented Reality.
    Chen L; Tang W; John NW; Wan TR; Zhang JJ
    Comput Methods Programs Biomed; 2018 May; 158():135-146. PubMed ID: 29544779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lightweight Deep Neural Network for Articulated Joint Detection of Surgical Instrument in Minimally Invasive Surgical Robot.
    Sun Y; Pan B; Fu Y
    J Digit Imaging; 2022 Aug; 35(4):923-937. PubMed ID: 35266089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vision-based and marker-less surgical tool detection and tracking: a review of the literature.
    Bouget D; Allan M; Stoyanov D; Jannin P
    Med Image Anal; 2017 Jan; 35():633-654. PubMed ID: 27744253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.