These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 35849025)

  • 1. Upgrading Organic Compounds through the Coupling of Electrooxidation with Hydrogen Evolution.
    Chen G; Li X; Feng X
    Angew Chem Int Ed Engl; 2022 Oct; 61(42):e202209014. PubMed ID: 35849025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Innovative Strategies for Electrocatalytic Water Splitting.
    You B; Sun Y
    Acc Chem Res; 2018 Jul; 51(7):1571-1580. PubMed ID: 29537825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Killing Two Birds with One Stone: Upgrading Organic Compounds via Electrooxidation in Electricity-Input Mode and Electricity-Output Mode.
    Ma J; Chen K; Wang J; Huang L; Dang C; Gu L; Cao X
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boosting Hydrogen Production by Anodic Oxidation of Primary Amines over a NiSe Nanorod Electrode.
    Huang Y; Chong X; Liu C; Liang Y; Zhang B
    Angew Chem Int Ed Engl; 2018 Oct; 57(40):13163-13166. PubMed ID: 30118157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent progress in energy-saving electrocatalytic hydrogen production
    Gao T; An Q; Tang X; Yue Q; Zhang Y; Li B; Li P; Jin Z
    Phys Chem Chem Phys; 2024 Jul; 26(29):19606-19624. PubMed ID: 39011574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molybdenum iron carbide-copper hybrid as efficient electrooxidation catalyst for oxygen evolution reaction and synthesis of cinnamaldehyde/benzalacetone.
    Li J; Du L; Guo S; Chang J; Wu D; Jiang K; Gao Z
    J Colloid Interface Sci; 2024 Nov; 673():616-627. PubMed ID: 38897063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unlocking Efficient Hydrogen Production: Nucleophilic Oxidation Reactions Coupled with Water Splitting.
    Wang P; Zheng J; Xu X; Zhang YQ; Shi QF; Wan Y; Ramakrishna S; Zhang J; Zhu L; Yokoshima T; Yamauchi Y; Long YZ
    Adv Mater; 2024 Jun; ():e2404806. PubMed ID: 38857437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in interface engineering of Fe/Co/Ni-based heterostructure electrocatalysts for water splitting.
    Hao J; Wu K; Lyu C; Yang Y; Wu H; Liu J; Liu N; Lau WM; Zheng J
    Mater Horiz; 2023 Jul; 10(7):2312-2342. PubMed ID: 37132292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of Synergistic Ni
    Yang S; Guo Y; Zhao Y; Zhang L; Shen H; Wang J; Li J; Wu C; Wang W; Cao Y; Zhuo S; Zhang Q; Zhang H
    Small; 2022 Jun; 18(24):e2201306. PubMed ID: 35570703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy-saving H
    Liu B; Wang G; Feng X; Dai L; Wen Z; Ci S
    Nanoscale; 2022 Sep; 14(35):12841-12848. PubMed ID: 36039893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenges for Hybrid Water Electrolysis to Replace the Oxygen Evolution Reaction on an Industrial Scale.
    Kahlstorf T; Hausmann JN; Sontheimer T; Menezes PW
    Glob Chall; 2023 Jul; 7(7):2200242. PubMed ID: 37483419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advancements in Electrochemical Hydrogen Production via Hybrid Water Splitting.
    Qian Q; Zhu Y; Ahmad N; Feng Y; Zhang H; Cheng M; Liu H; Xiao C; Zhang G; Xie Y
    Adv Mater; 2024 Jan; 36(4):e2306108. PubMed ID: 37815215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrocatalytic and photocatalytic hydrogen evolution integrated with organic oxidation.
    You B; Han G; Sun Y
    Chem Commun (Camb); 2018 Jun; 54(47):5943-5955. PubMed ID: 29761801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double Active Sites in Co-N
    Qin M; Fan S; Li X; Yin Z; Wang L; Chen A
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38256-38265. PubMed ID: 34342991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen production coupled with water and organic oxidation based on layered double hydroxides.
    Song Y; Ji K; Duan H; Shao M
    Exploration (Beijing); 2021 Dec; 1(3):20210050. PubMed ID: 37323686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen Production via Electrolysis of Wastewater.
    Huang L; Fang C; Pan T; Zhu Q; Geng T; Li G; Li X; Yu J
    Nanomaterials (Basel); 2024 Mar; 14(7):. PubMed ID: 38607103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transforming Electrocatalytic Biomass Upgrading and Hydrogen Production from Electricity Input to Electricity Output.
    Wang T; Huang Z; Liu T; Tao L; Tian J; Gu K; Wei X; Zhou P; Gan L; Du S; Zou Y; Chen R; Li Y; Fu XZ; Wang S
    Angew Chem Int Ed Engl; 2022 Mar; 61(12):e202115636. PubMed ID: 34939730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cobalt-metalloid alloys for electrochemical oxidation of 5-hydroxymethylfurfural as an alternative anode reaction in lieu of oxygen evolution during water splitting.
    Weidner J; Barwe S; Sliozberg K; Piontek S; Masa J; Apfel UP; Schuhmann W
    Beilstein J Org Chem; 2018; 14():1436-1445. PubMed ID: 29977407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous H2 Generation and Biomass Upgrading in Water by an Efficient Noble-Metal-Free Bifunctional Electrocatalyst.
    You B; Jiang N; Liu X; Sun Y
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):9913-7. PubMed ID: 27417546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ru-Doping Enhanced Electrocatalysis of Metal-Organic Framework Nanosheets toward Overall Water Splitting.
    Zhao M; Li H; Li W; Li J; Yi L; Hu W; Li CM
    Chemistry; 2020 Dec; 26(71):17091-17096. PubMed ID: 32734617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.