These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35849103)

  • 21. Dynamic Pooling Improves Nanopore Base Calling Accuracy.
    Boza V; Peresini P; Brejova B; Vinar T
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3416-3424. PubMed ID: 34784283
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance analysis of conventional and AI-based variant callers using short and long reads.
    Abdelwahab O; Belzile F; Torkamaneh D
    BMC Bioinformatics; 2023 Dec; 24(1):472. PubMed ID: 38097928
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast and sensitive mapping of nanopore sequencing reads with GraphMap.
    Sović I; Šikić M; Wilm A; Fenlon SN; Chen S; Nagarajan N
    Nat Commun; 2016 Apr; 7():11307. PubMed ID: 27079541
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MSRCall: a multi-scale deep neural network to basecall Oxford Nanopore sequences.
    Yeh YM; Lu YC
    Bioinformatics; 2022 Aug; 38(16):3877-3884. PubMed ID: 35766808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DeepSV: accurate calling of genomic deletions from high-throughput sequencing data using deep convolutional neural network.
    Cai L; Wu Y; Gao J
    BMC Bioinformatics; 2019 Dec; 20(1):665. PubMed ID: 31830921
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DeepMP: a deep learning tool to detect DNA base modifications on Nanopore sequencing data.
    Bonet J; Chen M; Dabad M; Heath S; Gonzalez-Perez A; Lopez-Bigas N; Lagergren J
    Bioinformatics; 2022 Feb; 38(5):1235-1243. PubMed ID: 34718417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanopore base calling on the edge.
    Perešíni P; Boža V; Brejová B; Vinař T
    Bioinformatics; 2021 Dec; 37(24):4661-4667. PubMed ID: 34314502
    [TBL] [Abstract][Full Text] [Related]  

  • 28. geck: trio-based comparative benchmarking of variant calls.
    Kómár P; Kural D
    Bioinformatics; 2018 Oct; 34(20):3488-3495. PubMed ID: 29850774
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improvement of large copy number variant detection by whole genome nanopore sequencing.
    Cuenca-Guardiola J; de la Morena-Barrio B; García JL; Sanchis-Juan A; Corral J; Fernández-Breis JT
    J Adv Res; 2023 Aug; 50():145-158. PubMed ID: 36323370
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Duet: SNP-assisted structural variant calling and phasing using Oxford nanopore sequencing.
    Zhou Y; Leung AW; Ahmed SS; Lam TW; Luo R
    BMC Bioinformatics; 2022 Nov; 23(1):465. PubMed ID: 36344913
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Benchmarking datasets for assembly-based variant calling using high-fidelity long reads.
    Lee H; Kim J; Lee J
    BMC Genomics; 2023 Mar; 24(1):148. PubMed ID: 36973656
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparing complex variants in family trios.
    Toptas BÇ; Rakocevic G; Kómár P; Kural D
    Bioinformatics; 2018 Dec; 34(24):4241-4247. PubMed ID: 29868720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel algorithms for efficient subsequence searching and mapping in nanopore raw signals towards targeted sequencing.
    Han R; Wang S; Gao X
    Bioinformatics; 2020 Mar; 36(5):1333-1343. PubMed ID: 31593235
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NanoSim: nanopore sequence read simulator based on statistical characterization.
    Yang C; Chu J; Warren RL; Birol I
    Gigascience; 2017 Apr; 6(4):1-6. PubMed ID: 28327957
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SVNN: an efficient PacBio-specific pipeline for structural variations calling using neural networks.
    Akbarinejad S; Hadadian Nejad Yousefi M; Goudarzi M
    BMC Bioinformatics; 2021 Jun; 22(1):335. PubMed ID: 34147063
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One Size Doesn't Fit All - RefEditor: Building Personalized Diploid Reference Genome to Improve Read Mapping and Genotype Calling in Next Generation Sequencing Studies.
    Yuan S; Johnston HR; Zhang G; Li Y; Hu YJ; Qin ZS
    PLoS Comput Biol; 2015 Aug; 11(8):e1004448. PubMed ID: 26267278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DeNovoCNN: a deep learning approach to de novo variant calling in next generation sequencing data.
    Khazeeva G; Sablauskas K; van der Sanden B; Steyaert W; Kwint M; Rots D; Hinne M; van Gerven M; Yntema H; Vissers L; Gilissen C
    Nucleic Acids Res; 2022 Sep; 50(17):e97. PubMed ID: 35713566
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transformation of alignment files improves performance of variant callers for long-read RNA sequencing data.
    de Souza VBC; Jordan BT; Tseng E; Nelson EA; Hirschi KK; Sheynkman G; Robinson MD
    Genome Biol; 2023 Apr; 24(1):91. PubMed ID: 37095564
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A haplotype-aware de novo assembly of related individuals using pedigree sequence graph.
    Garg S; Aach J; Li H; Sebenius I; Durbin R; Church G
    Bioinformatics; 2020 Apr; 36(8):2385-2392. PubMed ID: 31860070
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ReadCurrent: a VDCNN-based tool for fast and accurate nanopore selective sequencing.
    Fan K; Li M; Zhang J; Xie Z; Jiang D; Bo X; Zhao D; Shi S; Ni M
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39226890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.