BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35849229)

  • 1. Splitting tensile strength prediction of sustainable high-performance concrete using machine learning techniques.
    Wu Y; Zhou Y
    Environ Sci Pollut Res Int; 2022 Dec; 29(59):89198-89209. PubMed ID: 35849229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpretable Predictive Modelling of Basalt Fiber Reinforced Concrete Splitting Tensile Strength Using Ensemble Machine Learning Methods and SHAP Approach.
    Cakiroglu C; Aydın Y; Bekdaş G; Geem ZW
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Splitting tensile strength prediction of Metakaolin concrete using machine learning techniques.
    Li Q; Ren G; Wang H; Xu Q; Zhao J; Wang H; Ding Y
    Sci Rep; 2023 Nov; 13(1):20102. PubMed ID: 37973915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of various machine learning algorithms to predict strength properties of sustainable green concrete containing waste foundry sand.
    Javed MF; Khan M; Fawad M; Alabduljabbar H; Najeh T; Gamil Y
    Sci Rep; 2024 Jun; 14(1):14617. PubMed ID: 38918460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Performance Concrete Strength Prediction Based on Machine Learning.
    Liu Y
    Comput Intell Neurosci; 2022; 2022():5802217. PubMed ID: 35669631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Artificial Intelligence Methods for Predicting the Strength of Recycled Aggregate Concrete and the Influence of Raw Ingredients.
    Pan X; Xiao Y; Suhail SA; Ahmad W; Murali G; Salmi A; Mohamed A
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the Use of Machine Learning Models for Prediction of Compressive Strength of Concrete: Influence of Dimensionality Reduction on the Model Performance.
    Wan Z; Xu Y; Šavija B
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33546376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting compressive strength of RCFST columns under different loading scenarios using machine learning optimization.
    Wu F; Tang F; Lu R; Cheng M
    Sci Rep; 2023 Oct; 13(1):16571. PubMed ID: 37789042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Comparison of Machine Learning Tools That Model the Splitting Tensile Strength of Self-Compacting Recycled Aggregate Concrete.
    de-Prado-Gil J; Palencia C; Jagadesh P; Martínez-García R
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data-driven prediction on critical mechanical properties of engineered cementitious composites based on machine learning.
    Qing S; Li C
    Sci Rep; 2024 Jul; 14(1):15322. PubMed ID: 38961183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Artificial Intelligence Approaches: MLPNN, ANFIS, and GEP.
    Nafees A; Javed MF; Khan S; Nazir K; Farooq F; Aslam F; Musarat MA; Vatin NI
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Machine Learning Techniques for Predicting Compressive, Splitting Tensile, and Flexural Strengths of Concrete with Metakaolin.
    Shah HA; Yuan Q; Akmal U; Shah SA; Salmi A; Awad YA; Shah LA; Iftikhar Y; Javed MH; Khan MI
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unboxing machine learning models for concrete strength prediction using XAI.
    Elhishi S; Elashry AM; El-Metwally S
    Sci Rep; 2023 Nov; 13(1):19892. PubMed ID: 37963976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Split Tensile Strength Prediction of Recycled Aggregate-Based Sustainable Concrete Using Artificial Intelligence Methods.
    Amin MN; Ahmad A; Khan K; Ahmad W; Nazar S; Faraz MI; Alabdullah AA
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Tuned Machine Learning Approach for Predicting the Compressive Strength of High-Performance Concrete.
    Al-Shamiri AK; Yuan TF; Kim AJH
    Materials (Basel); 2020 Feb; 13(5):. PubMed ID: 32106394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Efficiency of Hybrid Intelligent Models in Predicting Fiber-Reinforced Polymer Concrete Interfacial-Bond Strength.
    Barkhordari MS; Armaghani DJ; Sabri MMS; Ulrikh DV; Ahmad M
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precise prediction of multiple anticancer drug efficacy using multi target regression and support vector regression analysis.
    Brindha GR; Rishiikeshwer BS; Santhi B; Nakendraprasath K; Manikandan R; Gandomi AH
    Comput Methods Programs Biomed; 2022 Sep; 224():107027. PubMed ID: 35914385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Healing Performance of Autogenous Healing Concrete Using Machine Learning.
    Huang X; Wasouf M; Sresakoolchai J; Kaewunruen S
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concrete compressive strength prediction modeling utilizing deep learning long short-term memory algorithm for a sustainable environment.
    Latif SD
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):30294-30302. PubMed ID: 33590396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Compressive and Splitting Tensile Strengths of Silica Fume Concrete Using M5P Model Tree Algorithm.
    Shah HA; Nehdi ML; Khan MI; Akmal U; Alabduljabbar H; Mohamed A; Sheraz M
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.