These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 35849230)

  • 41. Environmental Remediation and Application of Nanoscale Zero-Valent Iron and Its Composites for the Removal of Heavy Metal Ions: A Review.
    Zou Y; Wang X; Khan A; Wang P; Liu Y; Alsaedi A; Hayat T; Wang X
    Environ Sci Technol; 2016 Jul; 50(14):7290-304. PubMed ID: 27331413
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of self-oxidation and selectivity of iron-based reductant in anaerobic pentachlorophenol contaminated soil.
    Ren Y; Lee Y; Cui M; Zhou Y; Liang H; Khim J
    J Hazard Mater; 2022 Feb; 424(Pt A):127322. PubMed ID: 34601407
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced removal of soluble Cr(VI) by using zero-valent iron composite supported by surfactant-modified zeolites.
    Dang H; Zhang Y; Du P
    Water Sci Technol; 2014; 70(8):1398-404. PubMed ID: 25353946
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Contrasting effects of dry-wet and freeze-thaw aging on the immobilization of As in As-contaminated soils amended by zero-valent iron-embedded biochar.
    Zhang P; Fan J; Xu X; Xu Z; Yu Y; Zhao L; Qiu H; Cao X
    J Hazard Mater; 2022 Mar; 426():128123. PubMed ID: 34968846
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced reductive reactivity of zero-valent iron (ZVI) for pollutant removal by natural organic matters (NOMs) under aerobic conditions: Correlation between NOM properties and ZVI activity.
    He CS; Ding RR; Chen JQ; Zhou GN; Mu Y
    Sci Total Environ; 2022 Jan; 802():149812. PubMed ID: 34455275
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simultaneous adsorption and oxidative degradation of Bisphenol A by zero-valent iron/iron carbide nanoparticles encapsulated in N-doped carbon matrix.
    Jin Q; Zhang S; Wen T; Wang J; Gu P; Zhao G; Wang X; Chen Z; Hayat T; Wang X
    Environ Pollut; 2018 Dec; 243(Pt A):218-227. PubMed ID: 30176495
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pyrolytic production of zerovalent iron nanoparticles supported on rice husk-derived biochar: simple, in situ synthesis and use for remediation of Cr(VI)-polluted soils.
    Liu X; Yang L; Zhao H; Wang W
    Sci Total Environ; 2020 Mar; 708():134479. PubMed ID: 31796288
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanotechnology in remediation of water contaminated by poly- and perfluoroalkyl substances: A review.
    Zhang W; Zhang D; Liang Y
    Environ Pollut; 2019 Apr; 247():266-276. PubMed ID: 30685667
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent Advances in Sulfidated Zerovalent Iron for Contaminant Transformation.
    Garcia AN; Zhang Y; Ghoshal S; He F; O'Carroll DM
    Environ Sci Technol; 2021 Jul; 55(13):8464-8483. PubMed ID: 34170112
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Incorporation of zero valent iron nanoparticles in the matrix of cationic resin beads for the remediation of Cr(VI) contaminated waters.
    Toli A; Chalastara K; Mystrioti C; Xenidis A; Papassiopi N
    Environ Pollut; 2016 Jul; 214():419-429. PubMed ID: 27108046
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A controllable reduction-oxidation coupling process for chloronitrobenzenes remediation: From lab to field trial.
    Wei K; Wan Y; Liao M; Cao S; Zhang H; Peng X; Gu H; Ling C; Li M; Shi Y; Ai Z; Gong J; Zhang L
    Water Res; 2022 Jun; 218():118453. PubMed ID: 35489147
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An efficient, economical, and easy mass production biochar supported zero-valent iron composite derived from direct-reduction natural goethite for Cu(II) and Cr(VI) remove.
    Cai M; Zeng J; Chen Y; He P; Chen F; Wang X; Liang J; Gu C; Huang D; Zhang K; Gan M; Zhu J
    Chemosphere; 2021 Dec; 285():131539. PubMed ID: 34329142
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014).
    Guan X; Sun Y; Qin H; Li J; Lo IM; He D; Dong H
    Water Res; 2015 May; 75():224-48. PubMed ID: 25770444
    [TBL] [Abstract][Full Text] [Related]  

  • 54. One-step preparation of ZVI-sludge derived biochar without external source of iron and its application on persulfate activation.
    Wang J; Shen M; Gong Q; Wang X; Cai J; Wang S; Chen Z
    Sci Total Environ; 2020 Apr; 714():136728. PubMed ID: 31982750
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Using nanoscale zero-valent iron for the remediation of polycyclic aromatic hydrocarbons contaminated soil.
    Chang MC; Shu HY; Hsieh WP; Wang MC
    J Air Waste Manag Assoc; 2005 Aug; 55(8):1200-7. PubMed ID: 16187589
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Methods for characterizing the fate and effects of nano zerovalent iron during groundwater remediation.
    Shi Z; Fan D; Johnson RL; Tratnyek PG; Nurmi JT; Wu Y; Williams KH
    J Contam Hydrol; 2015 Oct; 181():17-35. PubMed ID: 25841976
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Iron-carbon material enhanced electrokinetic remediation of PCBs-contaminated soil.
    Song Y; Lei C; Yang K; Lin D
    Environ Pollut; 2021 Dec; 290():118100. PubMed ID: 34492528
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stability and pH-independence of nano-zero-valent iron intercalated montmorillonite and its application on Cr(VI) removal.
    Wu L; Liao L; Lv G; Qin F
    J Contam Hydrol; 2015 Aug; 179():1-9. PubMed ID: 26011800
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multi-objective optimization of permeable reactive barrier design for Cr(VI) removal from groundwater.
    Maamoun I; Eljamal O; Falyouna O; Eljamal R; Sugihara Y
    Ecotoxicol Environ Saf; 2020 Sep; 200():110773. PubMed ID: 32464445
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Removal of nitrate from groundwater by nano-scale zero-valent iron injection pulses in continuous-flow packed soil columns.
    Gibert O; Abenza M; Reig M; Vecino X; Sánchez D; Arnaldos M; Cortina JL
    Sci Total Environ; 2022 Mar; 810():152300. PubMed ID: 34896509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.