These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 35849273)
1. Increased production of chitinase by a Paenibacillus illinoisensis isolated from Brazilian coastal soil when immobilized in alginate beads. da Silva FKL; de Sa Alexandre AR; Casas AA; Ribeiro MC; de Souza KMC; Soares ES; Dos Santos Junior SR; Vieira JDG; Amaral AC Folia Microbiol (Praha); 2022 Dec; 67(6):935-945. PubMed ID: 35849273 [TBL] [Abstract][Full Text] [Related]
2. Expression of chitinase gene in BL21 pET system and investigating the biocatalystic performance of chitinase-loaded AlgSep nanocomposite beads. Mohammadzadeh R; Agheshlouie M; Mahdavinia GR Int J Biol Macromol; 2017 Nov; 104(Pt B):1664-1671. PubMed ID: 28347787 [TBL] [Abstract][Full Text] [Related]
3. Chitinases biosynthesis by immobilized Aeromonas hydrophila SBK1 by prawn shells valorization and application of enzyme cocktail for fungal protoplast preparation. Halder SK; Maity C; Jana A; Ghosh K; Das A; Paul T; Mohapatra PKD; Pati BR; Mondal KC J Biosci Bioeng; 2014 Feb; 117(2):170-177. PubMed ID: 23994224 [TBL] [Abstract][Full Text] [Related]
4. Mutual relationships between soils and biological carrier systems. Zohar-Perez C; Chet I; Nussinovitch A Biotechnol Bioeng; 2005 Oct; 92(1):54-60. PubMed ID: 15962339 [TBL] [Abstract][Full Text] [Related]
5. Novel characteristics of horseradish peroxidase immobilized onto the polyvinyl alcohol-alginate beads and its methyl orange degradation potential. Bilal M; Rasheed T; Iqbal HMN; Hu H; Wang W; Zhang X Int J Biol Macromol; 2017 Dec; 105(Pt 1):328-335. PubMed ID: 28712997 [TBL] [Abstract][Full Text] [Related]
6. Modified alginate and chitosan for lactic acid bacteria immobilization. Le-Tien C; Millette M; Mateescu MA; Lacroix M Biotechnol Appl Biochem; 2004 Jun; 39(Pt 3):347-54. PubMed ID: 15154848 [TBL] [Abstract][Full Text] [Related]
7. Immobilization of Sphingomonas sp. GY2B in polyvinyl alcohol-alginate-kaolin beads for efficient degradation of phenol against unfavorable environmental factors. Ruan B; Wu P; Chen M; Lai X; Chen L; Yu L; Gong B; Kang C; Dang Z; Shi Z; Liu Z Ecotoxicol Environ Saf; 2018 Oct; 162():103-111. PubMed ID: 29990721 [TBL] [Abstract][Full Text] [Related]
8. Characterization of an encapsulation device for the production of monodisperse alginate beads for cell immobilization. Serp D; Cantana E; Heinzen C; Von Stockar U; Marison IW Biotechnol Bioeng; 2000 Oct; 70(1):41-53. PubMed ID: 10940862 [TBL] [Abstract][Full Text] [Related]
9. Optimization of Enzyme Co-Immobilization with Sodium Alginate and Glutaraldehyde-Activated Chitosan Beads. Gür SD; İdil N; Aksöz N Appl Biochem Biotechnol; 2018 Feb; 184(2):538-552. PubMed ID: 28762007 [TBL] [Abstract][Full Text] [Related]
10. Dye decolorization and detoxification potential of Ca-alginate beads immobilized manganese peroxidase. Bilal M; Asgher M BMC Biotechnol; 2015 Dec; 15():111. PubMed ID: 26654190 [TBL] [Abstract][Full Text] [Related]
11. Enhanced phenol degradation by Pseudomonas sp. SA01: gaining insight into the novel single and hybrid immobilizations. Mollaei M; Abdollahpour S; Atashgahi S; Abbasi H; Masoomi F; Rad I; Lotfi AS; Zahiri HS; Vali H; Noghabi KA J Hazard Mater; 2010 Mar; 175(1-3):284-92. PubMed ID: 19883975 [TBL] [Abstract][Full Text] [Related]
12. Comparison of alginate and pectin based beads for production of poultry probiotic cells. Voo WP; Ravindra P; Tey BT; Chan ES J Biosci Bioeng; 2011 Mar; 111(3):294-9. PubMed ID: 21216192 [TBL] [Abstract][Full Text] [Related]
13. Immobilization of Bacillus amyloliquefaciens MBL27 cells for enhanced antimicrobial protein production using calcium alginate beads. Kumaravel V; Gopal SR Biotechnol Appl Biochem; 2010 Dec; 57(3):97-103. PubMed ID: 21044046 [TBL] [Abstract][Full Text] [Related]
14. Preparation and Biochemical Property of Penicillin G Amidase-Loaded Alginate and Alginate/Chitosan Hydrogel Beads. Nupur N; Ashish EY; Debnath M Recent Pat Biotechnol; 2016; 10(1):121-132. PubMed ID: 27494735 [TBL] [Abstract][Full Text] [Related]
15. Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads. Betigeri SS; Neau SH Biomaterials; 2002 Sep; 23(17):3627-36. PubMed ID: 12109688 [TBL] [Abstract][Full Text] [Related]
16. Release characteristics of chitosan treated alginate beads: I. Sustained release of a macromolecular drug from chitosan treated alginate beads. Sezer AD; Akbuğa J J Microencapsul; 1999; 16(2):195-203. PubMed ID: 10080113 [TBL] [Abstract][Full Text] [Related]
17. Chitosan-alginate multilayer beads for gastric passage and controlled intestinal release of protein. Anal AK; Bhopatkar D; Tokura S; Tamura H; Stevens WF Drug Dev Ind Pharm; 2003 Jul; 29(6):713-24. PubMed ID: 12889789 [TBL] [Abstract][Full Text] [Related]
18. Entrapment of cross-linked cellulase colloids in alginate beads for hydrolysis of cellulose. Nguyen LT; Lau YS; Yang KL Colloids Surf B Biointerfaces; 2016 Sep; 145():862-869. PubMed ID: 27318817 [TBL] [Abstract][Full Text] [Related]
19. Cell release from alginate immobilized Lactococcus lactis ssp. lactis in chitosan and alginate coated beads. Klinkenberg G; Lystad KQ; Levine TDW ; Dyrset N J Dairy Sci; 2001 May; 84(5):1118-27. PubMed ID: 11384038 [TBL] [Abstract][Full Text] [Related]
20. Immobilization of Escherichia coli novablue gamma-glutamyltranspeptidase in Ca-alginate-kappa-carrageenan beads. Hung CP; Lo HF; Hsu WH; Chen SC; Lin LL Appl Biochem Biotechnol; 2008 Aug; 150(2):157-70. PubMed ID: 18483700 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]