These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35849304)

  • 1. Reconstruction of sparse recurrent connectivity and inputs from the nonlinear dynamics of neuronal networks.
    Barranca VJ
    J Comput Neurosci; 2023 Feb; 51(1):43-58. PubMed ID: 35849304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compressive Sensing Inference of Neuronal Network Connectivity in Balanced Neuronal Dynamics.
    Barranca VJ; Zhou D
    Front Neurosci; 2019; 13():1101. PubMed ID: 31680835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compressive sensing reconstruction of feed-forward connectivity in pulse-coupled nonlinear networks.
    Barranca VJ; Zhou D; Cai D
    Phys Rev E; 2016 Jun; 93(6):060201. PubMed ID: 27415190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of sparsity in low-rank recurrent neural networks.
    Herbert E; Ostojic S
    PLoS Comput Biol; 2022 Aug; 18(8):e1010426. PubMed ID: 35944030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computational study of the role of spatial receptive field structure in processing natural and non-natural scenes.
    Barranca VJ; Zhu XG
    J Theor Biol; 2018 Oct; 454():268-277. PubMed ID: 29908188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of recurrent synaptic connectivity of thousands of neurons from simulated spiking activity.
    Zaytsev YV; Morrison A; Deger M
    J Comput Neurosci; 2015 Aug; 39(1):77-103. PubMed ID: 26041729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometry of population activity in spiking networks with low-rank structure.
    Cimeša L; Ciric L; Ostojic S
    PLoS Comput Biol; 2023 Aug; 19(8):e1011315. PubMed ID: 37549194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation.
    Augustin M; Ladenbauer J; Baumann F; Obermayer K
    PLoS Comput Biol; 2017 Jun; 13(6):e1005545. PubMed ID: 28644841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the dynamics of neural interactions between current-based and conductance-based integrate-and-fire recurrent networks.
    Cavallari S; Panzeri S; Mazzoni A
    Front Neural Circuits; 2014; 8():12. PubMed ID: 24634645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking Connectivity, Dynamics, and Computations in Low-Rank Recurrent Neural Networks.
    Mastrogiuseppe F; Ostojic S
    Neuron; 2018 Aug; 99(3):609-623.e29. PubMed ID: 30057201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The number of synaptic inputs and the synchrony of large, sparse neuronal networks.
    Golomb D; Hansel D
    Neural Comput; 2000 May; 12(5):1095-139. PubMed ID: 10905810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks.
    Naudé J; Cessac B; Berry H; Delord B
    J Neurosci; 2013 Sep; 33(38):15032-43. PubMed ID: 24048833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying the pulsed neuron networks' structures by a nonlinear Granger causality method.
    Zhu MJ; Dong CY; Chen XY; Ren JW; Zhao XY
    BMC Neurosci; 2020 Feb; 21(1):7. PubMed ID: 32050908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane potential resonance in non-oscillatory neurons interacts with synaptic connectivity to produce network oscillations.
    Bel A; Rotstein HG
    J Comput Neurosci; 2019 Apr; 46(2):169-195. PubMed ID: 30895410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vascular Dynamics Aid a Coupled Neurovascular Network Learn Sparse Independent Features: A Computational Model.
    Philips RT; Chhabria K; Chakravarthy VS
    Front Neural Circuits; 2016; 10():7. PubMed ID: 26955326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spike-Triggered Regression for Synaptic Connectivity Reconstruction in Neuronal Networks.
    Zhang Y; Xiao Y; Zhou D; Cai D
    Front Comput Neurosci; 2017; 11():101. PubMed ID: 29209189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaotic balanced state in a model of cortical circuits.
    van Vreeswijk C; Sompolinsky H
    Neural Comput; 1998 Aug; 10(6):1321-71. PubMed ID: 9698348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling mesoscopic cortical dynamics using a mean-field model of conductance-based networks of adaptive exponential integrate-and-fire neurons.
    Zerlaut Y; Chemla S; Chavane F; Destexhe A
    J Comput Neurosci; 2018 Feb; 44(1):45-61. PubMed ID: 29139050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inference of network connectivity from temporally binned spike trains.
    Vareberg AD; Bok I; Eizadi J; Ren X; Hai A
    J Neurosci Methods; 2024 Apr; 404():110073. PubMed ID: 38309313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compressive sensing of functional connectivity maps from patterned optogenetic stimulation of neuronal ensembles.
    Navarro P; Oweiss K
    Patterns (N Y); 2023 Oct; 4(10):100845. PubMed ID: 37876895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.