These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35849925)

  • 1. Recycling of arsenic-containing biohydrometallurgy waste to produce a binder for cemented paste backfill: Co-treatment with oil shale residue.
    Zhao Y; Gu X; Qiu J; Zhang S; Guo Z; Sun X
    J Environ Manage; 2022 Oct; 319():115621. PubMed ID: 35849925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-treatment of steel slag and oil shale waste in cemented paste backfill: Evaluation of fresh properties, microstructure, and heavy metals immobilization.
    Chang Y; Zhiyun Z; Dengfeng Z; Di Z; Liguo X
    J Environ Manage; 2024 Jan; 349():119406. PubMed ID: 37890302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilisation of construction and demolition waste as cemented paste backfill material for underground mine openings.
    Yılmaz T; Ercikdi B; Deveci H
    J Environ Manage; 2018 Sep; 222():250-259. PubMed ID: 29859465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low carbon binder modified by calcined quarry dust for cemented paste backfill and the associated environmental assessments.
    Zhao Y; Qiu J; Zhang S; Guo Z; Wu P; Sun X; Gu X
    J Environ Manage; 2021 Dec; 300():113760. PubMed ID: 34534757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and performance of composite activated slag-based binder for cemented paste backfill.
    Yang F; Wu F; Yang B; Li L; Gao Q
    Chemosphere; 2022 Dec; 309(Pt 1):136649. PubMed ID: 36181840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of Cemented Oil Shale Residue-Steel Slag-Ground Granulated Blast Furnace Slag Backfill and Its Environmental Impact.
    Li X; Li K; Sun Q; Liu L; Yang J; Xue H
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33921755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of overflow tailings properties on cemented paste backfill.
    Chen X; Shi X; Zhou J; Du X; Chen Q; Qiu X
    J Environ Manage; 2019 Apr; 235():133-144. PubMed ID: 30682665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on application and environmental effect of phosphogypsum-fly ash-red mud composite cemented paste backfill.
    Pan Z; Pan R; Cao Y; Chen Q; Yang M
    Environ Sci Pollut Res Int; 2023 Oct; 30(50):108832-108845. PubMed ID: 37755593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of Cr(VI)-containing tailings by using slag-cementing materials for cemented paste backfill: influence of sulfate and limestone addition.
    Zhao L
    Environ Sci Pollut Res Int; 2023 Aug; 30(40):91984-91996. PubMed ID: 37479941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithium slag and fly ash-based binder for cemented fine tailings backfill.
    He Y; Chen Q; Qi C; Zhang Q; Xiao C
    J Environ Manage; 2019 Oct; 248():109282. PubMed ID: 31374435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the Strength and Leaching Characteristics of Steel Slag-Oil Shale Residue-Based Filling Paste in a Complex Erosive Environment.
    Lian F; Du C; Meng D
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on properties of sewage sludge cemented paste backfill and leaching mechanism of heavy metals.
    Chen S; Liu Y; Ma J; Du Y; Sun C
    Environ Sci Pollut Res Int; 2023 Apr; 30(19):56774-56785. PubMed ID: 36928701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of slag-based cementitious material on the mechanical behavior and heavy metal immobilization of mine tailings based cemented paste backfill.
    Zhang F; Li Y; Zhang J; Gui X; Zhu X; Zhao C
    Heliyon; 2022 Sep; 8(9):e10695. PubMed ID: 36164537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Curing temperature dependency of the release of arsenic from cemented paste backfill made with Portland cement.
    Bull AJ; Fall M
    J Environ Manage; 2020 Sep; 269():110772. PubMed ID: 32560993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of a new alkali-activated binder for superfine-tailings mine backfill.
    Sun Y; Zhao Y; Qiu J; Zhang S; Sun X; Gu X
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):73115-73130. PubMed ID: 35622277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strength development and self-desiccation of saline cemented paste backfill.
    Carnogursky EA; Fall M; Haruna S
    Environ Sci Pollut Res Int; 2024 Feb; 31(10):14894-14911. PubMed ID: 38286929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of water-reducing admixtures in cemented paste backfill of sulphide-rich mill tailings.
    Ercikdi B; Cihangir F; Kesimal A; Deveci H; Alp I
    J Hazard Mater; 2010 Jul; 179(1-3):940-6. PubMed ID: 20382473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithium Slag and Solid Waste-Based Binders for Cemented Lithium Mica Fine Tailings Backfill.
    Li J; Huang J; Hu Y; Zhu D
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of partial cement substitution by ground blast furnace slag on the mechanical properties of phosphogypsum cemented backfill.
    Chen G; Yao N; Ye Y; Fu F; Hu N; Zhang Z
    Environ Sci Pollut Res Int; 2023 Oct; 30(46):102972-102985. PubMed ID: 37676458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilization capacity assessment of a binder from arsenic-containing biohydrometallurgy waste: Effects of halloysite nanotubes and biochar addition.
    Zhao Y; Sun Y; Guo Z; Sun X; Qiu J
    Sci Total Environ; 2023 Sep; 891():164637. PubMed ID: 37290654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.