These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 35849929)
1. Valorizing (cleaned) sulfidic mine waste as a resource for construction materials. Helser J; Perumal P; Cappuyns V J Environ Manage; 2022 Oct; 319():115742. PubMed ID: 35849929 [TBL] [Abstract][Full Text] [Related]
2. Leaching assessment of cemented bauxite tailings through wetting and drying cycles of durability test. Bruschi GJ; Dos Santos CP; Levandoski WMK; Ferrazzo ST; Korf EP; Saldanha RB; Consoli NC Environ Sci Pollut Res Int; 2022 Aug; 29(39):59247-59262. PubMed ID: 35386074 [TBL] [Abstract][Full Text] [Related]
3. Environmental and human health risk assessment of sulfidic mine waste: Bioaccessibility, leaching and mineralogy. Helser J; Vassilieva E; Cappuyns V J Hazard Mater; 2022 Feb; 424(Pt A):127313. PubMed ID: 34597925 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of metal partitioning and mobility in a sulfidic mine tailing pile under oxic and anoxic conditions. Pinto PX; Al-Abed SR; Holder C; Reisman DJ J Environ Manage; 2014 Jul; 140():135-44. PubMed ID: 24747936 [TBL] [Abstract][Full Text] [Related]
5. Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia. Hiller E; Petrák M; Tóth R; Lalinská-Voleková B; Jurkovič L; Kučerová G; Radková A; Sottník P; Vozár J Environ Sci Pollut Res Int; 2013 Nov; 20(11):7627-42. PubMed ID: 23436124 [TBL] [Abstract][Full Text] [Related]
6. Impact of declining oxygen conditions on metal(loid) release from partially oxidized waste rock. Kaasalainen H; Lundberg P; Aiglsperger T; Alakangas L Environ Sci Pollut Res Int; 2019 Jul; 26(20):20712-20730. PubMed ID: 31104229 [TBL] [Abstract][Full Text] [Related]
7. Performance of waste-based amendments to reduce metal release from mine tailings: One-year leaching behaviour. Rodríguez L; Gómez R; Sánchez V; Villaseñor J; Alonso-Azcárate J J Environ Manage; 2018 Mar; 209():1-8. PubMed ID: 29274515 [TBL] [Abstract][Full Text] [Related]
8. Mobility of metal(loid)s in Pb/Zn tailings under different revegetation strategies. Wang G; Zhao W; Yuan Y; Morel JL; Chi H; Feng W; Wang S; Zhang J; Feng Z; Tan H; Chen D; Ding W; Liu C; Qiu R J Environ Manage; 2020 Jun; 263():110323. PubMed ID: 32174515 [TBL] [Abstract][Full Text] [Related]
9. The Evaluation of the Heavy Metal Leaching Behavior of MSWI-FA Added Alkali-Activated Materials Bricks by Using Different Leaching Test Methods. Xu P; Zhao Q; Qiu W; Xue Y Int J Environ Res Public Health; 2019 Mar; 16(7):. PubMed ID: 30935069 [TBL] [Abstract][Full Text] [Related]
10. Suitability of using diffusive gradients in thin films (DGT) to study metal bioavailability in mine tailings: possibilities and constraints. Conesa HM; Schulin R; Nowack B Environ Sci Pollut Res Int; 2010 Mar; 17(3):657-64. PubMed ID: 19816728 [TBL] [Abstract][Full Text] [Related]
11. Geochemical position of Pb, Zn and Cd in soils near the Olkusz mine/smelter, South Poland: effects of land use, type of contamination and distance from pollution source. Chrastný V; Vaněk A; Teper L; Cabala J; Procházka J; Pechar L; Drahota P; Penížek V; Komárek M; Novák M Environ Monit Assess; 2012 Apr; 184(4):2517-36. PubMed ID: 21674226 [TBL] [Abstract][Full Text] [Related]
12. Leaching of heavy metal(loid)s from historical Pb-Zn mining tailing in abandoned tailing deposit: Up-flow column and batch tests. Yao Y; Tong L; Zhao R; Wang Q; Qiu J; Wang F; Li J; Yan Y; He Y; Li S J Environ Manage; 2023 Jan; 325(Pt A):116572. PubMed ID: 36419286 [TBL] [Abstract][Full Text] [Related]
13. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Liu H; Probst A; Liao B Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766 [TBL] [Abstract][Full Text] [Related]
14. The importance of sulphide binding for leaching of heavy metals from contaminated Norwegian marine sediments treated by stabilization/solidification. Sparrevik M; Eek E; Grini RS Environ Technol; 2009 Jul; 30(8):831-40. PubMed ID: 19705667 [TBL] [Abstract][Full Text] [Related]
15. Screening of heavy metal containing waste types for use as raw material in Arctic clay-based bricks. Belmonte LJ; Ottosen LM; Kirkelund GM; Jensen PE; Vestbø AP Environ Sci Pollut Res Int; 2018 Nov; 25(33):32831-32843. PubMed ID: 27832436 [TBL] [Abstract][Full Text] [Related]
17. Biological aqua crust mitigates metal(loid) pollution and the underlying immobilization mechanisms. Wang G; Yuan Y; Morel JL; Feng Z; Chen D; Lu C; Guo M; Liu C; Wang S; Chao Y; Tang Y; Zhao D; Xiao S; Zhang W; Qiu R Water Res; 2021 Feb; 190():116736. PubMed ID: 33321454 [TBL] [Abstract][Full Text] [Related]
18. Temporal-spatial variation and partitioning of dissolved and particulate heavy metal(loid)s in a river affected by mining activities in Southern China. Wang J; Liu G; Wu H; Zhang T; Liu X; Li W Environ Sci Pollut Res Int; 2018 Apr; 25(10):9828-9839. PubMed ID: 29372524 [TBL] [Abstract][Full Text] [Related]
19. The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications. Jarošíková A; Ettler V; Mihaljevič M; Kříbek B; Mapani B J Environ Manage; 2017 Feb; 187():178-186. PubMed ID: 27889660 [TBL] [Abstract][Full Text] [Related]
20. Metal(loid) diagenesis in mine-impacted sediments of Lake Coeur d'Alene, Idaho. Toevs GR; Morra MJ; Polizzotto ML; Strawn DG; Bostick BC; Fendorf S Environ Sci Technol; 2006 Apr; 40(8):2537-43. PubMed ID: 16683589 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]