BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35849932)

  • 1. Removal of hazardous ions from aqueous solutions: Current methods, with a focus on green ion flotation.
    Wan Nafi A; Taseidifar M
    J Environ Manage; 2022 Oct; 319():115666. PubMed ID: 35849932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of copper (II) from aqueous solutions by flotation using polyaluminum chloride silicate (PAX-XL60 S) as coagulant and carbonate ion as activator.
    Ghazy SE; Mahmoud IA; Ragab AH
    Environ Technol; 2006 Jan; 27(1):53-61. PubMed ID: 16457175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sustainable approach on removal of toxic metals from electroplating industrial wastewater using dissolved air flotation.
    Pooja G; Kumar PS; Prasannamedha G; Varjani S; Vo DN
    J Environ Manage; 2021 Oct; 295():113147. PubMed ID: 34214795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and application of a green surfactant for the treatment of water containing PFAS/ hazardous metal ions.
    Ziaee F; Ziaee M; Taseidifar M
    J Hazard Mater; 2021 Apr; 407():124800. PubMed ID: 33359975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. U(VI) removal from diluted aqueous systems by sorption-flotation.
    Constantin C; Popescu IC; Oprea O; Stoica L
    Sci Rep; 2022 Oct; 12(1):16951. PubMed ID: 36217011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nickel ion removal prediction model from aqueous solutions using a hybrid neural genetic algorithm.
    Hoseinian FS; Rezai B; Kowsari E
    J Environ Manage; 2017 Dec; 204(Pt 1):311-317. PubMed ID: 28898752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metals removal from aqueous solution by iron-based bonding agents.
    Deliyanni EA; Lazaridis NK; Peleka EN; Matis KA
    Environ Sci Pollut Res Int; 2004; 11(1):18-21. PubMed ID: 15005136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous fixed-bed column study and adsorption modeling removal of Ni
    Banza M; Rutto H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2022; 57(2):117-129. PubMed ID: 35137674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface change of microplastics in aquatic environment and the removal by froth flotation assisted with cationic and anionic surfactants.
    Jiang H; Bu J; Bian K; Su J; Wang Z; Sun H; Wang H; Zhang Y; Wang C
    Water Res; 2023 Apr; 233():119794. PubMed ID: 36868113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling and efficiency evaluation of the continuous biosorption of Cu(II) and Cr(VI) from water by agricultural waste materials.
    Blagojev N; Vasić V; Kukić D; Šćiban M; Prodanović J; Bera O
    J Environ Manage; 2021 Mar; 281():111876. PubMed ID: 33418386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation.
    Shakir K; Elkafrawy AF; Ghoneimy HF; Elrab Beheir SG; Refaat M
    Water Res; 2010 Mar; 44(5):1449-61. PubMed ID: 19942250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid flotation--membrane filtration process for the removal of heavy metal ions from wastewater.
    Blöcher C; Dorda J; Mavrov V; Chmiel H; Lazaridis NK; Matis KA
    Water Res; 2003 Sep; 37(16):4018-26. PubMed ID: 12909122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of green biosorbent using rice hull to preconcentrate, remove and recover heavy metal and other metal elements from water.
    Dan Y; Xu L; Qiang Z; Dong H; Shi H
    Chemosphere; 2021 Jan; 262():127940. PubMed ID: 33182111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-Level Arsenic Removal from Drinking Water.
    Makavipour F; Pashley RM; Rahman AFMM
    Glob Chall; 2019 Mar; 3(3):1700047. PubMed ID: 31565364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review on heavy metal biosorption utilizing modified chitosan.
    Shankar S; Joshi S; Srivastava RK
    Environ Monit Assess; 2023 Oct; 195(11):1350. PubMed ID: 37861930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review.
    Sud D; Mahajan G; Kaur MP
    Bioresour Technol; 2008 Sep; 99(14):6017-27. PubMed ID: 18280151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental applications of a biodegradable cysteine-based surfactant.
    Taseidifar M
    Ecotoxicol Environ Saf; 2020 Dec; 206():111389. PubMed ID: 32987265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of heavy metal ions from water by complexation-assisted ultrafiltration.
    Trivunac K; Stevanovic S
    Chemosphere; 2006 Jun; 64(3):486-91. PubMed ID: 16423376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactants.
    Ahn CK; Park D; Woo SH; Park JM
    J Hazard Mater; 2009 May; 164(2-3):1130-6. PubMed ID: 19022570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural Jordanian zeolite: removal of heavy metal ions from water samples using column and batch methods.
    Baker HM; Massadeh AM; Younes HA
    Environ Monit Assess; 2009 Oct; 157(1-4):319-30. PubMed ID: 18830802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.